

DOI: <u>10.4081/monaldi.2020.1444</u>

An Italian consensus on pulmonary rehabilitation in COVID-19 patients recovering from acute respiratory failure: results of a Delphi process

Michele Vitacca¹, Marta Lazzeri^{2,3}, Enrico Guffanti⁴, Pamela Frigerio⁵, Francesco D'Abrosca³, Silvia Gianola⁶, Mauro Carone¹, Mara Paneroni^{1,3}, Piero Ceriana¹, Franco Pasqua⁷, Paolo Banfi⁸, Francesco Gigliotti⁹, Carla Simonelli¹, Serena Cirio¹, Veronica Rossi¹⁰, Chiara G. Beccaluva¹¹, Mariangela Retucci¹², Martina Santambrogio^{3,12}, Andrea Lanza^{3,13}, Francesca Gallo¹², Alessia Fumagalli⁴, Marco Mantero^{12,14}, Greta Castellini⁶, Giorgio Castellana¹, Eleonora Volpato⁸, Mariaconsiglia Calabrese^{15,16}, Marina Ciriello^{16,17}, Marina Garofano¹⁶, Enrico Clini¹⁸, Nicolino Ambrosino¹

on behalf of AIPO (Associazione Italiana Pneumologi Ospedalieri), ARIR (Associazione Riabilitatori dell'Insufficienza Respiratoria), SIP (Società Italiana di Pneumologia) AIFI (Associazione Italiana Fisioterapisti) and SIFIR (Società Italiana di Fisioterapia e Riabilitazione)

¹Pulmonary Rehabilitation Units, ICS Maugeri IRCCS, Pavia

²Department of Cardiothoracic and Vascular Surgery, ASST Grande Ospedale Metropolitano Niguarda, Milan

³Italian Association of Respiratory Physiotherapists (ARIR) Unità Spinale ASST, Grande Ospedale Metropolitano Niguarda, Milan

⁴Pulmonary Rehabilitation Unit, Italian National Research on Aging (IRCCS INRCA), Casatenovo (LC) ⁵Maternal and Pediatric Department, ASST Grande Ospedale Metropolitano Niguarda, Milan

⁶Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan

⁷Pulmonary Rehabilitation Unit, Clinical Rehabilitation Institute of Villa delle Querce, Nemi (RM) ⁸Pulmonary Rehabilitation Unit, Fondazione Don Carlo Gnocchi, Milan

⁹Pulmonary Rehabilitation Unit, Fondazione Don Carlo Gnocchi, Florence

¹⁰Health Professions Department Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan

¹¹Pulmonary Rehabilitation Unit, ASST Ospedale Maggiore, Crema

¹²Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan

¹³Department of Neuroscience, Sleep Medicine Center, ASST Grande Ospedale Metropolitano Niguarda, Milan

¹⁴Department of Pathophysiology and Transplantation, University of Milan

¹⁵AOU San Giovanni di Dio e Ruggi d'Aragona, University of Salerno

¹⁶Società Italiana Fisioterapia e Riabilitazione (S.I.Fi.R.)

¹⁷Monaldi Hospital, A.O.R.N. dei Colli, Naples

¹⁸Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy

Comments, justifications and highlights about each recommendation of authors and panelists.

Suggestions	Author's comments	Panelists' comments { <i>rating</i> }
1.1 Healthcare professionals treating COVID-19 patients should wear appropriate personal protective equipment (PPE) and they should be trained in how to put on and take off PPE to avoid self- contamination	The actual standards according to the ISS of the Italian Minister of Health, the CDC are to wear the following Personal Protection needs: (respirator N95 or FFP2/FFP3 or equivalent standard, long-sleeved water- resistant gown, two pairs of gloves, eye protection (goggles or a face shield) (1-4)	The PPE should be modified for possibly or probably negative patients {6} After 2 months working in COVID-19 patients I have been negative in test, so I hope this good result is due to be well protected during my task even though I used FFP" for 1 week {9} I would suggest using googles AND
		face shield when aerosol generating procedures (AGPs) are used in hospital setting {9}
1.2 During the first 3 months after infection, also if patient has negative nasal/throat swabs, use eye and respiratory protections, gloves and if possible disposable	This is necessary due to the high number of asymptomatic infected subjects	A variable could be linked to the time of finding the negativity (late) with respect to the date of onset of the disease {6}
gown when aerosol generating procedures (AGPs) are used.		It is prudent to adopt a protective protocol; 3 months seems a long time, probably adequate {8} Nowadays in my department we are taking this care. In Pulmonary

Table 1. Suggestions for personal protection needs.

Function Lab, all professionals are using protection in any case {8}
If the patient is truly asymptomatic with negative swab, PPE with mask/ face shield is likely satisfactory {7}
Nasal/throat swabs are not sure method to evaluate negative patients, because they are operator dependent and more patients are infective for more than 60 days {7}
I fully agree because, unfortunately, with the nasal/throat swabs we can have many false negatives (by the recent international reports even up to 40-45% of the cases) {9}
I think that healthcare personnel have to wear this PPE also because of the impossibility to know if a patient has still a negative swab without other analysis {9}
A post COVID-19 survivor with two negative swabs should not require

		full protection. A surgical mask is sufficient {3}
1.3 All patients should wear a	This is necessary due to the high	If treatment means medical visit then
medical mask, when possible,	number of asymptomatic infected	the mask does not need to be
during treatment	subjects	medical grade and can be a patient's
		own cloth mask (reduce expenditure
		of medical supplies) and should be
		accompanied by initial screening
		prior to visit/treatment. If treatment
		is a truly a procedure involved then
		additional safeguards such as COVID-
		19 testing 24-48 h prior and
		quarantine prior to treatment might
		be considered {9}
		This is valid for every people, not
		only patients, so it's even more valid
		in a healthcare ambient or situation
		{9}
1.4 Strategies to minimize	- For oxygen delivery and respiratory	Antimicrobial and antiviral filter for
dispersion of infected droplets and	support, choose interfaces that allow	inhaler spacer use, too {9}
aerosol should be employed, during	less aerosol and droplets spread.	
AGPs.	- For oxygen therapy it is	I also suggest and if it's possible, to
	recommended the use face-mask.	treat these patients in setting with
	When using nasal cannula as in	more than 12 air changes per hour
	conventional oxygen therapy or HFNC	and with negative pressure via
	(High flow nasal-cannula oxygen),	microfiltration of the extracted air.
	the nasal cannula must be well-	{9}

positioned inside the nostrils and a	
surgical mask should be added over	For inhaled therapy I would
the nasal cannulas, covering patient	recommend even MDI nebulizers,
mouth and nose.	above all for patients that cannot use
- For CPAP/NIV therapy, safest	in the right way DPIs {8}
interfaces are helmet or non-vented	
face mask. It is preferable to combine	
it with a double circuit with an	
expiratory valve. Whenever it is	
necessary to combine a face mask	
with a single circuit, we suggest to	
use a circuit equipped with an	
integrated expiratory valve and not to	
use vented masks. In addition, an	
antimicrobial and antiviral filter	
should always be installed.	
- For inhaled therapy it is	
recommended choose dry powder	
inhalers instead of jet nebulizers.	
- For endotracheal suction, use close	
circuit	
- Surgical mask and antimicrobial and	
antiviral filter should be changed	
regularly (surgical mask changed at	
least every 6 to 8 h while filters at	
last every 12 h) (5,6)	

1.5 For outpatient consultation, the	We suggest to use sodium	To sanitize all surfaces in a room it
examination room should be aerated	hypochlorite 0.1 or 0.5%, ethanol	will take a lot of time and the need
after each consultation and surfaces	70% or hydrogen peroxide 0.5% (7)	for additional personnel to do it {9}
have to be sanitized. In waiting		
room ensure spatial distance		That's what we are doing right now in
between patients.		our waiting room and the protocol we
		are using in the lab $\{9\}$
		Only surfaces involved. An untouched
		surface can be left alone {7}
		I agree with cleaning surfaces
		between patients; however, I am not
		clear what is meant by aerated- if it
		is a negative pressure room, this will
		take one hour depending on air
		exchange. If it is not a negative
		pressure room, it will take at least 2
		hours- this time is not feasible for
		regular clinic/office visits and is likely
		not necessary if both patient and
		provider are masked and the patient
		is asymptomatic {6}
		Acustics of the second is your
		Aeration of the room is very
		important {9}
		I think these are two separate
		decisions. I would strongly support

spacing but not as strongly the idea
of re-sanitization unless there is
reason to suspect asymptomatic
droplet spread {7}

Suggestions	Author's comments	Panelists' comments {rating}
2.1 Days of contagious risk, need of	For how much time patients are	PR should be used as a dynamic and
PR, timing to start PR and predictors	contagious, which proportion of post	all-inclusive tool, based on an
of recovery are unknown	COVID-19 patients need	accurate evaluation, in order to
	rehabilitation and the predictors of	promote faster recovery, limit
	recovery from disease are unknown.	sequalae, improve QoL. Paying
	Two types of COVID-19 patients	attention to safety above all in acute
	could benefit of rehabilitation	settings, PR provides for several
	programs: i) patient with nasal/throat	types of interventions (<i>e.g</i> . patient
	swabs still positive for SARS-CoV-2 or	assessment, motivational interview,
	patient negative but with symptoms	giving recommendations, physical
	or imaging suggestive for lung	rehabilitation programs, etc.) that
	involvement where presence of virus	can be beneficial for a large and
	in deep lung cannot be excluded; ii)	varied group of patients. We still
	patient surely negative. At the same	don't have enough data suggesting
	time four possible patient phenotypes	when to start and on which kind of
	are expected: i) Healthy, young with	phenotypes use PR precisely in
	fast recovery; ii) young/mid age,	COVID-19, but the experience on
	healthy or 1 comorbidity, with slow	different respiratory diseases (e.g.
	recovery, desaturation under effort;	IPF, COPD, CF) should be an
	iii) middle age/elderly with 2 or more	encouraging base {6}
	serious comorbidity, with slow	
	recovery, residual disability, acute	We need also to set up a feedback
	event risks, hypoxia at rest; iv)	designed to unveil disability after
	elderly with 4 or more comorbidity,	COVID-19 infection in order to select
	with critical conditions, bedridden,	the right population in need of PR.

Table 2. Which phenotype and candidate after acute event.

unstable hypoxia, high O ₂ flow need, low indication to rehab, high probability for exitus (8-10).	Likely this population will be very large (<i>i.e.</i> the majority of patients) after discharge from hospital, but we do not know the time-lapse of recovery {9}
	Post critic patients were involved in my daily task, and I recommend rehab in all patients as we should do in all respiratory OR cardiac patients, so with safety measures all are patients should be involved in PR programs, from critical to more stable patients {8}
	I agree that days of contagious risk and predictors of recovery are unknown, however, even at this early time in our understanding of COVID- 19 infection and sequelae, it is highly likely that all post-infectious patients will need some degree of
	rehabilitative services and that early (when safe) initiation of rehabilitation will provide the highest likelihood of positive outcomes (this is been shown for non-COVID-19 critical illness) so I would not agree with

keeping "need" or "timing" in this statement is such a declarative way {7}
There are no data about PR in SARS- CoV-2 disease, but there are some experiences with SARS and MERS diseases. In these diseases 20-30% of patient have persistent lung injuries, and some degree of pulmonary disfunction. They are the candidates to pulmonary rehabilitation programs {7}
In my opinion, also in this case, it's confirmed the general rule that early rehabilitation is always the best choice, if the patient can also join a low-intensity workload protocol. Who can in fact exclude a priori that early rehabilitation can also have positive effects on the main rehabilitation outcomes in these cases? {8}
I think that, unfortunately, it may exist another type of patient that can present the same phenotype of the a and b example. Mostly at home,

2.2 PR programs should be proposed to dyspneic, older, comorbid patients with long length of stay, ICU history, needing weaning from MV or tracheostomy cannula, reduced strength and exercise capacity, requiring oxygen at rest and during effort with lung function and psychological impairment.	The following symptoms and measures are conditions had to be monitored during the PR program: dyspnea, fatigue, oxygen saturation, respiratory rate, heart rate, speech ability, ADL, anxiety, depression, risk for acute complications and sudden death (10,11-17).	there are many patients that can present those characteristics, but they've never done a swab so their condition respect to diagnosis is unknown {8} PR is a very adaptable tool, widely based on patient global assessment. On the other hand, in my personal experience COVID-19 showed as a particular condition affecting many patients in several ways. I agree with the traits described here and I believe that PR should be used even in less symptomatic patients with brief hospitalizations or pauci- symptomatic patients with positive nasal swabs requiring isolation at home to reduce the physical and psychological impact of the disease. Total agree with symptoms and measures {8} Surprisingly, these patients were very impaired in terms of muscle atrophy, in both legs and arms. Due
		atrophy, in both legs and arms. Due to vascular problems skin injuries are present in these patients and this fact difficult the rehabilitation in

these patients due to the pain their suffer {9} I would not group post ICU survivors with MV patients or tracheostomy patients. I think these are different groups and the second group is far more dangerous for staff because of aerosol generation {7}
Frailty should be added to this statement I also hope that this statement is not misinterpreted to mean that PR should ONLY be proposed to this group of patients as there is likely even more importance on rehabilitation for the younger patients with critical COVID-19 illness {9}
Several young patients just in oxygen therapy have reduced strength, balance problems and exercise capacity. Often subjects with COVID-19 don't feel dyspnea, but a maximal muscle effort {9}

		Recovery of the diaphragm functionality by ultrasound assessment before, during and at the end of PR program {9}
		I think that these patients represent the classic Pulmonary Rehabilitation candidates, so if the Pulmonary Rehabilitation Centers can afford to receive and manage them and Clinicians think that they can improve their conditions, they have to be involved in this type of programs {9}
2.3 Due to different conditions and	In summary, PR programs should be	Phenotypes a) and b), alone, do not
patients' phenotypes, individualized	proposed to:	provide an indication for PR {6}
programs should be proposed	a) older than 60 years	
	b) presence of more than 2	Humbly, PR programs should be
	comorbidities	designed individually, because even
	c) long length of stay	patients younger than 60 years also
	d) previous need of MV or	presented high level of impairment
	tracheostomy	and it IS MANDATORY to realize that
	e) Reduced strength	all respiratory muscle test or function
	f) Balance problems	are nowadays very discouraged due
	g) Reduced exercise capacity	to the aerosolization during the
	h) High required FiO2 during	maneuvers, and we still must study if
	 h) High required FIO2 during hospital stay i) Hypoxia at rest (SpO₂ <94%) 	these devices are safe for use after these positive patients {8}

 j) Exercise induced desaturation k) Slow recovery in imaging l) VC <80% pred. m)Carbon monoxide diffusion capacity DLCO <60% pred. n) MIP/MEP <60% pred. o) Stability in cardiac problem (<i>e.g.</i>, arrhythmia, myocarditis) (10,14-16,19). 	I strongly agree with the statement, however, I again have concerns with the comment supporting the recommendation as it sounds exclusionary. This patient population (>60 years) clearly has severe impairment due to COVID-19 illness on top of underlying age/comorbid factors, however, early evidence suggests similar significant pathophysiology in younger (<60 years) COVID-19 patients who will desperately need rehabilitation to return to work/child care, <i>etc.</i> {9}
	PR are always personalized {9} Often PR program should be important for young people without or with one comorbidity, too {9} I think that, if it's possible, PR programs should be offered to younger people too, even if they have 1 or no comorbidities. In many cases the clinical situation before the SARS-CoV-2 infection may be misunderstood so, only the clinical

2.4 The baseline assessment core set is not yet availableThe following outcomes measures after rehabilitation programs could be recommendation to mention Volume	:o m
Set is not yet available after refraintation programs could be recommendation to mention we welcomed: normalization of resting SaTO2, improvement in Barthel index, Barthel dyspnea, BORG dyspnea after ADL, SPPB test, 1 minute sit to stand or 6MWD, one breath counting test, MRC muscles scale, EuroQoL VAS or anxiety and depression scale (10,14-16,19-23). Heart rate have been very imp to check during physiotherapy critical patients in our ward. A should focus always in these patients with courd disorders should also be consider ittle compliant and with reduce skills in the activities of daily li Might also consider cognitive outcome measures as we are scentral nervous system vascula complication with COVID-19 ar long-term neurologic sequelae arise {9}	ortant n post /e otients nitive ered, d e {9} eeing r d

		Same outcomes are predominant in disease: dyspnea measure, resting SatO ₂ and during exercise {9}
2.5 In case of tracheostomy, standardized protocols for cannula removal, swallowing impairment, tracheal aspirations and decannulation are welcomed	In the presence of tracheostomy, standardized protocols for tracheostomy cannula removal should be applied as for evaluation of swallowing impairment. The number of tracheal aspirations over 24 hours should be considered reason for not- decannulation as assessment of protective reflexes, effective cough with reduction in and/or ability to self-manage secretions. Assessment of vocal cord mobility and tracheal patency by fibro-bronchoscopy should be indicated as assessment of absence of obstruction of the upper respiratory tract should be indicated (24).	Weaning from tracheal cannula should be a patient tailored intervention and, in the same time, a strongly measure-supported practice. Cough effectiveness and swallowing efficacy are key factors: MEP measure (25) could be supported by PEF, PCF, PEF/PCF, VC and FVC measures, with an eye at new weaning strategies involving NIV (25-27). As concerns number of tracheal aspirations: "this criterion was sensitive and specific. It is, however, too subjective because it is dependent on the healthcare professionals and caregivers who are responsible for the patient. In addition, there are now methods of mechanical and manual cough assist that are designed to remove secretions, so it seems that computing the number of tracheal- suctions is not an essential

evaluation for decannulation decisions" (28) To conclude, a deeper review of literature would be recommended {8}
Guidelines / protocols are welcome as long as this does not limit the customization of the weaning program remember that removing the cannula reduces the production of secretions, improves swallowing and that there are tools such as the cough assistant that can be used in a non-invasive way {9} Early decannulation of tracheostomized COVID-19 patients with the aim to reduce burden of virus spread in the hospital is to avoid {9}
All these patients before to decannulation point, we tested: swallowing test, number of aspirations, ability to cough, secretions to the mouth event, the cannula, tolerance of 24 h with occluded cannula {9}

	Agree. This is a problem for COVID- 19 but also for non COVID-19 patients {9} In my opinion, the following are also
	important: a) exclude in FBS the presence of tracheomalacia, trachea- esophageal fistulas, granulomas for decubitus tracheal cannula on the posterior wall obstructing the lumen itself; b) assess hemodynamic stability (BP), cardiac activity (HR / min) and the percentage of oxygen necessary to maintain arterial saturation (ABGC) during SBT above
	90% after 2 h of use of the speech valve; c) MIP / MEP measured by a pressure gauge at the tracheal cannula greater than 30 and 40 cm HO respectively; d) at least 1 methylene blue test per day for 3 consecutive days or more, to exclude dysphagia after 15 min by suctioning or esophageal reflux by suctioning after 30 min {9}

Yes, but we are assuming (not stated
in the question) full PPE during
procedures {9}

Suggestions	Author's comments	Panelists' comments {rating}
3.1 It is reasonable that	The definite epidemiology and natural history	I would not like that all these
patients with frailty are the	of frail patients affected by COVID-19 are not	"negative" statements of frailty
most vulnerable to COVID-	clear. There are no clear indications on the	and rehab could give a false
19	number and level of frailty of hospitalized	impression on the potential of
	patients for COVID-19 outbreak. The effect	rehab in frail patients. Today's
	size of COVID-19 in determining new onset of	lack of evidence is coupled with
	frailty, the optimal tool and timing for	the fact that rehab is probably
	diagnosis, the impact of frailty on pulmonary	the only therapeutic approach
	rehabilitation outcome, the role of	that can help frail patients
	rehabilitation in reversing frailty and improving	(subjects) to climb back at least
	prognosis after COVID-19 is not clear. Again, it	some steps of their
	is not clear whether and what correlations	frailty/disability vicious circle
	exists between clinical frailty and disability and	{9}
	mortality from COVID-19.	
	It is reasonable that patients with frailty are	Frailty alone does not always
	the most vulnerable to COVID-19, patients	make the patient more
	with frailty could be affected by COVID-19	vulnerable. The level of
	more seriously and developed a poor	vulnerability is determined by the
	prognosis, introduction of frailty measurements	coexistence of other aspects such
	could identify the frailty risk, guide	as type of treatments, LOS,
	intervention strategies and care plan and	setting {7}
	provide targeted intervention (exercise	
	program). Frailty patients, surviving from	Even frail patients postcritical
	COVID-19, could show high rates of disability,	rehabilitation have been good
	rehabilitation needs and barriers to	responders to the early
	rehabilitation. Frailty assessments could be	

Table 3. Are frailty measurements important?

	used for critical care management decisions	rehabilitation programs even
	during the COVID-19 pandemic (29-32)	though the sequelae $\{9\}$
		This is a very important point.
		these COVID-19 patients
		experienced extreme isolation
		during admission which might
		have prolonged recovery and
		prognosis as well {9}
		Sometimes COVID-19 is "a
		comorbidity" for frail subjects
		and not a disease (a lot of older
		people are asymptomatic) {9}
3.2 Patients with frailty could	Frailty should be early recognized before	I believe that the statement is
be affected by COVID-19	setting up the PR program, to reduce risk for	appropriate but that we should
more seriously and	poor COVID-19 outcomes. The recognition of	also remember that "specific"
developed a poor prognosis	frailty should be part of the routine assessment	disability (<i>e.g</i> . respiratory) has to
	particularly in patients aged >65 years. PR	be taken into account at least as
	programs should be tailored according to the	much as a "global" perspective.
	results of frailty evaluation. The choice of	the difficult task is to combine
	frailty assessment tool should be done	both points of view {9}
	according to literature evidence and local	
	expertise, with preference to those targeting	As I mentioned before, our
	residential patients with respiratory disease.	experience in our post critical
	The Fried frailty phenotype (FFP) scale should	ward we got quite good results in
	be considered as the first tool to assess frailty	the 70% of patients in terms of
	in patients with COVID-19. The frailty	functional capacity (from

	assessment obtained by FFP could be integrated by other easily applicable tests. Minnesota Leisure-Time Physical Questionnaire and Center for Epidemiologic Studies- Depression [CES-D] questionnaire could be a part of frailty assessment in patients with COVID-19. Frailty measurements should be integrated by multidimensional evaluation focusing on global exercise capacity (mainly strength, followed by aerobic, flexibility, balance, and coordination), nutritional, and psychosocial status (33-37)	myopathic to walking situation) {9} Frailty is important, but in my experience, it is not so closed to prognosis {9}
3.3 Frailty should be early recognized before setting up the PR program, to reduce risk for poor COVID-19 outcomes	Frailty should be included among the outcome measures of rehabilitation program. Frailty as an outcome measure of rehabilitation program should be evaluated both as a omni- comprehensive score (depending on the tool adopted) and as specific domains (e.g. cognitive function, sureness of movement, gait speed, etc.) The determination of frailty- related outcomes should be performed after appropriate time window from the beginning of intervention, depending on considered domains. Frailty measure should be correlated with the adherence of treatment in PR program. The presence of tracheostomy or its recent weaning should be considered as a modulator	It should be obvious at the time of patient assessment. Frailty scales fifer as does the definition of frailty {9}

	of the frailty status and should be systematically evaluated at the beginning, ongoing, and at the end the rehabilitation program. When considering home-rehabilitation in the frail COVID-19 patient, a valid recognition of domestic environment and support by	
	caregivers should be implemented for efficacy and safety reasons (33,34,36)	
3.4 Frailty measurements should be integrated by multidimensional evaluation focusing on global exercise capacity, strength, balance, coordination, nutritional and psychosocial status.	The discharge ward must guarantee 24-h telephone availability, monitoring of symptoms and clinical conditions, adherence to pharmacological therapy and rehabilitation home program and burnout of the caregivers (29,30,32,38).	To support these h24/d365 programs we need funding {9} No idea why the supporting comments address monitoring - all items relevant but do not belong to the frailty question {9} It would be very difficult for the ward to guarantee this availability. Maybe it would be easier to check at 1 week and at 1, 3 and 6 months these symptoms and to address them to specific specialists {9}
		The comment does not seem to be relevant to the

	recommendation but it is a valid one {9}
	The comment has little to do with the question {9}

Suggestions	Author's comments	Panelists' comments {rating}
4.1 There is currently no clear scientific evidence for the timing of PR	There is currently no clear scientific evidence for the timing of PR (15,39,42,45).	 If we consider that patients have an acute interstitial pneumonia with associated respiratory failure in some cases evolving into ARDS, the timing for PR is in the acute phase, <i>i.e.</i> in the critically ill patient. This is in analogy to similar non-COVID-19 clinical pictures {9} As I mentioned before our experience was very good, we had physiotherapy 7/7 ratio 1 respiratory physiotherapist for maximum 9 patients {9} Agree but you can infer that early is better given the prolonged course of many COVID-19 patients and the benefits of early rehab in other populations including the critically ill. Of course, this will need to be balanced with proper infection control practices {9}

Table 4. Timing of Pulmonary Rehabilitation (PR) start.

Physiotherapy should begin in the acute
inpatient setting and continue after
transfer to inpatient rehabilitation.
Early mobilization should include
frequent posture changes, bed mobility,
sit-to-stand, simple bed exercises, and
ADLs, while respecting the patient's
respiratory and hemodynamic states.
Active limb exercises should be
accompanied by progressive muscle
strengthening (suggested program: 8-
12 repetition-maximum load for 8-12
repetitions, 1 to 3 sets with 2 min rest
between sets, 3 sessions a week for 6
weeks). Neuromuscular electrical
stimulation can be used to assist with
strengthening. Aerobic reconditioning
can be accomplished with overland
walking, cycle or arm ergometry, or a
NuStep cross trainer. Initially, aerobic
activity should be kept to less than 3
metabolic equivalents of task. Later,
progressive aerobic exercise should be
increased to 20-30 min, 3-5 times a
week. Balance work should be
incorporated. Studies on the
effectiveness of exercise interventions
after SARS showed benefits for
aiter JANJ Shuweu Dehenits IUI

		endurance, maximum oxygen consumption, and strength (49) {7}
4.2 PR must start early in the	RR must start early in the course of	PR in COVID-19 patients is for sure a
course of hospital treatment	hospital treatment (12,40-44,46)	useful intervention and should tailored on patient's needs considering safety criteria: COVID-19 patients often presents an hypoxemic status with different levels of criticality: a correct assessment and a multidisciplinary evaluation is needed to plan an adequate intervention not affecting oxygenation and WOB {8}
		Existing recommendations for diseases requiring treatments similar to those used for COVID-19, seem to suggest early rehabilitation (acquired disability after ICU or after LOS, <i>etc</i> .) {9}
		One assumes-but the definition of PR is quite different depending on the setting {9}
		COVID-19 disease evolution is very variable, PR is not always needed {9}
		With stable and awake patients. Doubts in first acute phase {9}

4.3 A PR must start already in the ICU to obtain the maximum benefits	PR must start early in the course of hospital treatment as in the ICU to obtain the maximum benefits (39)	Even in my hospital physiotherapist start working in the ICU quite late, after 2 weeks of the start point in COVID-19 patients {9}
		yes - you mean mobilization {9} Agree. In both ICU and Respiratory intermediate ICU during supine and prone positioning {9}
4.4 Pulmonologist expert in rehabilitation field should coordinate the multidisciplinary team	Many papers show that a multidisciplinary team is needed to manage COVID-19 patients (15,45)	 Multidisciplinary team is essential to define and achieve goals in rehab that is an extended and complex subject. We should consider to assemble the team on the base of the patients' needs, building a fluent communication with different specialists, basing on the setting {9} As it is for PR in general {9} Expert in rehab. field should coordinate the multidisciplinary team, based on the main functional impairment and local organization {9} Pulmonologists expert in rehab are rare

		Consultations within different teams should be ensured {6}
4.5 PR programs in outpatients and telemedicine should be considered for mild COVID-19 patients and patients discharged from hospitals	There is evidence on PR programs in outpatients and telemedicine for mild COVID-19 patients and for patients discharged from hospitals that will be implemented during pandemics (42,46- 48).	I think it is problematic to link 'mild COVID-19' and 'pts discharged' in the same question. If a patient had mild COVID-19 illness- they are much more likely to have little to no functional impairments, therefore PR would not be indicated. However, discharged patients are likely to have been much sicker as they were hospitalized, therefore, they would be more likely to need PR {5} It is not clear to me if the mild COVID- 19 means those patients who have been treated at home because asymptomatic. For those discharged from hospital it does not matter the grade of diseases involvement? if this is the case for both then the rate of agreement for me would be higher {6} Telemedicine is certainly an excellent opportunity to continue following patients by reducing travel for the patient and reducing the risk of contagion for operators {8}

From the 4 quoted papers I would not say that there is "evidence" on PR
Programs in telemedicine. The quoted
papers refer to clinical experience
and/or on hypothesis. Paper #10 is to
me completely wrong in the
background. They state "The first
consideration is that patients with
severe and critical COVID-19 are
potentially very unstable and have very
low exercise tolerance, even in the
younger population. Therefore, the role
of physical therapy in acute-care units
and ICUs is limited". I reply that rehab in ICU is evidence based. Provided that
the M.D. and Physiotherapists know what they are doing. Authors continue:
"The transfer to a rehabilitation setting
should be performed only if the
referring clinician in the acute-care unit
is reasonably sure that the patient's
condition will not worsen and the
patient will not need to return back to
the ICU or acute-care setting. From
clinical experience, our
recommendations for transferring
patients to rehabilitation are to avoid
direct transfer from the ICU. Patients

I WITH S	severe forms in acute care should
	ansferred to PMR only if they have
	e SatO ₂ and RR and radiological
	ession of the disease has been
	out. When the patient is stabilized
	-
	least 3 days (no recurrence of
	; both RR and SatO ₂ stable), they
	e transferred to PMR settings". I
	that if we exclude from rehab
· · · ·	nts because are too severe, we
	rm "cosmetic" rehab. The rehab
team	(starting from the M.D.s) should
be ab	le to manage the clinical problems
as oth	ner clinicians do in the hospital. In
additi	on, if the severe patient has to
wait t	to be less severe to go on rehab,
he/sh	e will stay longer in the acute
hospit	tal ward, loose physical function,
increa	ases the risk of complications, etc.
etc. T	hey also state: "We strongly
advise	e implementing tele-consultation
and te	ele-rehabilitation devices,
minim	nizing exposure risk and
	menting communication
	ologies to help patients and
	es reduce barriers imposed by
	ion". This is a wish, a hypothesis
	s reasonable but to me has no

evidence as of today. And for this reason, we need to build the evidence that telemedicine or telerehabilitation is useful in post-COVID19 patients {3}
Mainly in those patients who suffer dyspnea during exercise {8}
Evidence on telemedicine is still inconclusive {2}

Fable 5. Assessment.		r
Suggestions	Author's comments	Panelists' comments {rating}
5.1 The ability to predict discharge outcomes following COVID-19 is unknown.	To now, factors associated with lower odds of discharge are not completely clear. What is the role of the assessment of viral clearance before discharge and what the suitable setting depending on clearance status, what is the role of comorbidities, severity of imaging features, laboratory data, in view of a successful discharge are unknown. Information on how long a COVID-19 patient remains infective and what evidence is required before an infected, and subsequently recovered, person can go back to his/her normal life and work is not clear. The ability to predict discharge outcomes following COVID-19 is poor (50)	In our experience patients with comorbidity like cerebral infarction were the once with more long/difficult recovering time {6} Review also this article (58)
5.2 A complete resolution of the damage due to COVID-19 is probably possible for the most part of the patients, but it is not known how many patients will have irreversible of progressive	Particular challenging could be the rehabilitation of: i) patients who develop a fibrotic damage of the lung ii); patients who develop pulmonary hypertension or heart failure due to severe respiratory failure and pulmonary embolism during the acute phase of the disease; iii) patients with persistent mood, cognitive or neurological disorders	That's why we mended a follow-up program, this also to be designed empirically {9} Not able to give information {4} Data are available for SARS and MERS, that are similar in evolution

5.3 The role of comorbidities, severity of imaging features, laboratory data, in view of a successful discharge are unknown	It is not known if the control of the frequent comorbidities, in particular Systemic hypertension and diabetes, could be a protective factor for COVID-19	Looks like cerebral vascular damage could be important, and also suggesting interstitial lung image in the chest X-ray could suggest oxygen therapy {7} Diabetes and hypertension are associated with poor prognosis {8} I agree about comorbidities like hypertension and diabetes, a little less for severity of imaging feature like CT scan and laboratory data like ABGC and DLCO or some scores like PF {5}
5.4 Symptoms scales, infectious	Blood tests (Blood count, Hb1Ac, biochemistry, TSH, BNP), chest X-ray or CT	Spirometry and measurement of MIP and MEP could still be measured by
disease/immunological status, hematological data, imaging, cardiorespiratory function, pulmonary function tests, respiratory muscle strength,	the presence of cardiac problems and/or peripheral vascular thrombosis, BMI and nutritional aspect, echocardiography should be considered as an outcome measure. Pulmonary function tests and respiratory muscle strength may be useful for patient stratification but have been associated with	using the correct DPI and adequate disinfection procedures (at least in post-COVID-19 patients) {9} Surrogate tests should be used based on the time from the infection {9}
nutritional status, comorbidities should be assessed	an increasing risk of COVID-19 transmission among patients/subjects and medical staffs (50-52) Charlson Comorbidity Index (CCI) (53)	I think it is premature to be measuring cardiorespiratory exercise-it is also not without risk {6}

		I agree with the recommendations but am unclear why the testing mentioned in the first part of the comments would be considered "outcomes"- to me, these would be considered part of an assessment of the patient prior to rehab to fully understand impairment, as also the CCI would be {9}
		There are no data on Pulmonary function in COVID-19 {6}
5.5 Neurological and		Add also cognitive impairment and
psychological disorders		delirium (particularly in those after
(anxiety, depression) and		ICU stay) {9}
frailty should be assessed		
		Sleep quality should also be
		investigated. Anxiety can affect sleep,
		and in turn disturbed sleep can affect
		daytime functioning {7}
5.6 Exercise tolerance,	The desaturation observed in the patients	Should be evaluated, not only the
functional status and	with chronic lung disease in the brief exercise	degree of desaturation, but also the
physical performance,	tests are likely to be more marked in those	recovery time to return to the initial
presence of critical illness	with COVID-19. For this reason, even a small	saturation {9}
neuromyopathy and ICU	desaturation on exercise should alert the	
acquired weakness should	clinician and a drop of 4% should be cause for	Not really-they are discriminative
be considered as an	serious concern, regardless of the amount of	measures useful initially. Some are
outcome measure	exercise needed to produce it. Pulmonary	not evaluative and may not serve well
	function tests and respiratory muscle strength	as outcomes {6}

may be useful for patient stratification but have been associated with an increasing risk of COVID-19 transmission among patients/subjects and medical staffs (51,52)	I think you should also mention CPET - while there will be challenges to performing testing in some patients, this gold standard can provide
Exercise tolerance could be assessed by 6MWT with SpO ₂ value at rest and during 6MWT, dyspnea value by Borg Scale (0-10) at rest and during 6 MWT.	additional (and very important) information on cardiac limitations to exercise which is a significant concern in this patient population {9}
6MWT is the gold standard tests of exertion in lung disease and is design to ensure an accurate assessment of oxygen desaturation and to provide a clinically useful oxygen titration. However, 6MWT has been hampered by the need for large spaces (30-m hallway) and the test may require an examiner to walk with the patient to increase safety, in addition COVID-19 patient frequently can't go out of room in hospital setting. We found no published literature describing validation of exertional desaturation tests in COVID-19. Two tests have potential utility: a) 6-minute and 3-minute step tests (step up	In my experience patients are not able to do 6 or 3MST. 6MWT is not possible in COVID-19 ward {8}
and down on a 25 cm platform as fast as possible) may constitute a practical method for assessing effort tolerance and exercise	

related oxyhemoglobin desaturation. 6 or 3
MST are a practical, reliable, valid, and
responsive alternative for measuring exercise
capacity, particularly where space and time
are limited. 6MST provided reliable and
reproducible estimates of exercise capacity
and exercise-related oxyhemoglobin
desaturation in stable interstitial lung disease
(54). However, 6MST correlation with the
gold standard 6-minute walk test did not yet
be investigated and we know that they are
not interchangeable, and the 6MST requires
more energy than the 6MWT. b) 1-minute sit-
to-stand test (patient stands up fully and sits
down as many times as they can in one
minute did no assess of exertional
desaturation. If the 1MSTS is used, it should
be followed by monitoring for at least one
minute to observe for desaturation (55). The
latter is less demanding (hence safer), but is
less sensitive to desaturation. When doing
more strenuous exertion tests, carefully
observe the patient and also make a clinical
judgement based on severe fatigue and
tachypnoea (55).

5.7 Activities of daily living (ADL), baseline functional impairment due to dyspnea and how breathlessness affects patient's mobility should be considered as an outcome measure	Functional status and physical performance could be assessed by SPPB, 1-minute sit to stand, TUG. Presence of critical illness neuromyopathy and ICU acquired weakness could be assessed by Medical Research Council sum score and Handgrip dynamometry. About this last test, a force value of less than 11 kg-force for males and less than 7 kg-force for females resulted in the maximum combination of sensitivity and specificity for the diagnosis of ICUAW (52,54-57) Barthel dyspnea Index or Barthel Index or FIM performance in activities of daily living (ADL) (23)	Daily life activity (ADL), basal functional impairment also seems to be due to muscle fatigue {5} I think fatigue is the main symptom more than dyspnea. It should be evaluated during ADL in quantitative and qualitative terms. FIM and Barthel Index alone cannot always measure the patient's condition and its evolution {6}
5.8 Role of caregiver, the availability of internet, the presence of tele-rehabilitation platform		OK for caregiver, as for other disabling conditions, we still need to do more studies for Tele-surveillance and tele- rehab in COVID-19 patients {9}

and the availability of	
rehabilitative home	In my Unit we have been working with
service should be	telemedicine since 2014 and
assessed before discharge	nowadays the paradigm changed.
	Patients are much more ready to tele-
	rehab {7}
	Would be cautious with the
	recommendation for tele-rehabilitation
	and home rehab as these are evolving
	areas of investigation and the actual
	format and delivery can be quite
	variable and may not be intense
	enough to deliver positive outcomes
	{7}

Suggestions	Author's comments	Panelists' comments {rating}
6.1 Early changes of lung	The long-term fibrotic sequela	The evolution of the clinical, pathological
imaging by CT scan toward	(reticulation, interlobular septal	and imaging picture of coves pulmonary
consolidation are described	thickening, and traction bronchiectasis)	infection is still not well understood {9}
within 15 days from	are not described and only can be	
admission	supposed (59,60)	Unclear of the meaning of this
		recommendation or comment. Imaging is
		crucial for acute treatment but this
		recommendation might better discuss the
		potential role for follow-up imaging to
		assess for long term lung parenchymal
		changes that may impact lung function in
		recovery {7}
		In my opinion is a good strategy to do in the
		symptomatic patient hospitalized, after the
		first radiological examination upon entering
		the hospital, and already in the third, fourth
		day, a deepening by CT scan, which can give
		us interesting and early information about
		the lung's parenchyma damages {5}
6.2 Chest X-ray may be		If possible, I prefer a CT scan in particular in
useful to target individual		case of ground glass imagine in previous CT
interventions, but not a		scan {8}
good outcome measure for		
the PR program		Presumably, not sure, there is no evidence
		for this, is a new area {9}

Table 6. Which diagnostic imaging is informative to individualize the program?

I would also consider to perform CT scan in those patients with early lung consolidations (during admission or within 1 month post discharge) within 6 to 8 months follow up {5}
This follow-up is recommended by BTS guidelines {8}
I do not see how a chest x-ray would alter the approach to PR nor change with PR {9}
I think that the choice should be depending on the grade on disease; therefore ,at least a CXR but for many patients with mild to severe Acute Respiratory failure a CT scan should be documented {5}
Image test should be performed before to start a PR program to evaluate level of impairment {7} Tc scan is better {7}
Chest X-ray can be used as an outcome measure in several conditions, talking about rehabilitation and physiotherapy in general as well. As concerns COVID-19 and the

	peculiar chest imaging presentation of this disease, I can't say if chest X-ray could be that useful as an outcome measure, also considering the low (but possible) risk of chest x-ray administration. Considering other concurrent conditions (<i>e.g.</i> atelectasis, hypersecretion signs, <i>etc</i>) chest X-ray is still a favorable tool but for PR in COVID-19 I assume we should count on other outcome measures {4}
	Chest X ray don't change with rehabilitation {9}
	Wording recommendation: "Chest X-ray may be documented before the onset of PR" Mandatory documentation of chest X-ray may limit the number of patients enrolling to PR {8}
6.3 Chest X-ray should be performed early (3-5 months) in the follow-up	I would consider this as part of clinical care of the patient post any respiratory insult, but I don't see how it impacts PR. My answer reflects clinical care, NOT PR {7}
	As for the previous question. If the grade of the lung damage involvement is severe, then may be a CT scan at 6 months follow up would be better than a chest X-ray {5}

Chest X-ray may be one of the tests to be performed in follow up together with CT, ultrasound; how much these tests influence the individualization of the program has yet to be verified {5}
We have no data. What is the hypothesis? Chest X-ray are useful to identify patients that in the mid-term still have lung sequelae? If so, I would recommend much more than Chest X-ray clinical, physiological (including 6MWT) and, in analogy with other interstitial lung diseases, HRCT scan of the chest {3}
To check the evolution should be considered {7}
Instead of chest X-ray, TC scan could be more useful especially in patients who had a previous TC scan {8}

Suggestions	Author's comments	Panelists' comments {rating}
7.1 Blood gas analysis	The pathophysiologic mechanism of	Also consider paO_2 (A-a), an index of the
(ABG) with the PaO2/FiO2	disrupted gas exchange induced by SARS	gas diffusion capacity {9}
values are the gold	CoV2 could include: a) Endothelial damage,	
standard to measure gas	microvascular clotting, alveolo-capillary	
exchanges	membrane failure (61); b) Disruption of	
	afferent and efferent connections between	
	the nucleus of the solitary tract and	
	mechanoreceptors and chemoreceptors of	
	lung and respiratory tract (62)	
7.2 ABG is mandatory at		No evidence. It depends on the previous
admission and discharge		ABGs performed before PR and the trend
with supplementary		of the patient. ABG is also an invasive
controls in case of severe		procedure so I would not make it
dyspnea or fever		mandatory {4}
		On admission, but for many patients,
		oximetry is adequate for ongoing
		monitoring {5}
		The use of ABG is a clinical decision and is
		guiding by the acuity and severity of signs
		and symptoms of COVID-19 infection.
		While I would not disagree with ABGs in
		the acute critical illness, I am not sure that
		ABG at discharge is necessary is SaO2 is

Table 7: When and how to assess gas exchanges? what are the best informative indexes?

		normal and home oxygen assessment is done {5}
7.3 Pulse oximetry (PO) and SaO2/FiO2 values are fundamental instrument	Pulse oximetry had to be monitored every 8 h for patients on non-invasive ventilation and oxygen therapy, every 12 hours for	Together with clinical and symptom monitoring {9}
for monitoring clinical situation at rest and during effort	patients on spontaneous breathing with oxygen or HFNC, every 24 hours for all other patients; supplementary controls in case of dyspnea or fever.	Pulse oximeter is important in follow-up but not in acute phase {7}
7.4 Pulse oximetry device during self-managed at home is recommended	Pulse oximetry device during self-managed or remote controlled (tele-rehabilitation) sessions is recommended. Measurements	Probably but no evidence on schedule, characteristics of patients, etc. {9}
	should be done at the beginning, at peak effort and at the end of the sessions.	It must be individually assessed {6}
		Of limited value {6}
		At least initially {9}

Author's comments	Panelists' comments {rating}
Pulmonary function tests have been associated with an increasing risk of	Invaluable information; all PFT labs should make a concerted effort to
COVID-19 transmission among	provide a safe environment; partition
patients/subjects and medical staffs	between technician and patient,
	negative pressure on patient side, etc {9}
	After 3-4 months {9}
The impact of COVID-19 infection on lung	Global Spirometry <i>i.e.</i> plethysmography
function, the long-term impact is still	{9}
unclear. According to the functional	
alterations of SARS and ARDS, the study of	Too much reliance on PF tests. Depends
diffusion capacity (DLCO) seems reasonable (63).	on reason and clinical situation {6}
One-hundred and ten discharged cases	Also, small airways measure is useful to
were recruited, which included 24 cases of	evaluate evolution of ground glass
mild illness, 67 cases of pneumonia and 19	lesions {9}
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Pulmonary function tests have been associated with an increasing risk of COVID-19 transmission among patients/subjects and medical staffs The impact of COVID-19 infection on lung function, the long-term impact is still unclear. According to the functional alterations of SARS and ARDS, the study of diffusion capacity (DLCO) seems reasonable (63). One-hundred and ten discharged cases were recruited, which included 24 cases of

Table 8. When e which lung function tests?

	were noted in DLCO% in 51 cases (47.2%), total lung capacity (TLC)% in 27 (25.0%), forced expiratory volume in the first second (FEV1)% in 15 (13.6%), forced vital capacity (FVC) % in 10 (9.1%), FEV1/FVC in 5 (4.5%), and small airway function in 8 (7.3%). Impaired diffusing-capacity among the different groups of severity, which accounted for 30.4% in mild illness, 42.4% in pneumonia and 84.2% in severe pneumonia, respectively (p<0.05) (64)	
8.3 Severe impairment should not be considered as a contraindication for pulmonary rehabilitation (PR)		
8.4 Lung function tests are not outcome measures of PR program	Lung function tests should be performed before PR program while lung function tests should not be included in the outcome measures of PR program	As for other categories of patients undergoing PR {9} Lung function test should be useful as predictive outcomes (morbidity, mortality, <i>etc</i> .) {4} This is true for traditional disease;
		however, I do not think we can say this with certainty (yet) for this disease where so much is unknown {8}

In SARS patients, PR have improved lung function tests {9}	
In this case, I believe that DLCO test can have some importance {5}	

Suggestions	Author's comments	Panelists' comments {rating}
9.1 Before starting the	Physical performance and disability are	This point needs to be clarified. When
rehabilitation program and	areas we expected to be impaired after	you write "hospital discharge" you
at hospital discharge an	COVID-19 infection and principal outcome	mean the Acute General Hospital or
assessment of physical	measures of Pulmonary Rehabilitation.	the Rehab Hospital? In my place,
performance and ADL	Baseline assessment could be performed by	patients are discharged from General
autonomy is recommended;	simple and fast tests in order to find	Hospitals and transferred to the rehab
if abnormal values are	presence of impairment. This screening	hospital. The two have completely
found, further specific	could be performed through SPPB (Short	different missions, culture,
measures should be	Physical Performance Battery) and/or	procedures, staff and as a
administered to quantify	disability scales (<i>i.e</i> . Barthel index). If	consequence evaluation processes at
single limitations; these	physical performance impairment or	admission and discharge {5}
measures could be also	disability is detected, further measures are	
used as rehabilitative	mandatory in order to better define	Sensitive scales for assessing balance
outcome measure.	rehabilitative problems to be treated.	are long enough to administer. Fatigue
	Exercise tolerance could be assessed by	may limit its administration {9}
	fields test such as 6Minute Walking Test	
	(6MWT) or surrogate (1-minute STS, 6-	
	minute step-test). Peripheral muscle	
	strength could be assessed by dynamometry	
	of principal arm and leg muscles. Balance	
	function could be assessed by stability board	
	or dedicated scale such as Tinetti scale (65-	
	70)	
9.2 Standard maximal	Baseline Cardiopulmonary Exercise Test is	I'll wait much more time, perhaps 3
Cardiopulmonary Exercise	recommended only after at least 6-8 weeks	months especially in case of
Test (CPET) is not	of acute hospital discharge, due to infectious	symptoms (<i>i.e</i> . chest pain) during the

Table 9. Functional evaluation (static and dynamic) – exercise capacity tests – muscles measures tests.

recommended in the first 6- 8 weeks after acute hospital discharge due to unknown cardiorespiratory and muscle involvement and infectious risk	risk and potential patient's risks due to unknow cardiorespiratory and muscle involvement	field tests (or ADL and so on) and if the performance is very low yet. In this case I'd prefer to continue with the effort re-adaptation until the symptoms are less severe {5} Agree but again is a presumption, we have no data {9} It could still be distorted by convalescence even if it is expected after an acute event in many pathologies {6} I believe this is unknown and 6-8 weeks is rather arbitrary.{5} I can agree with this statement, but I have not found any evidence to confirm this {7}
9.3 The assessment of exercise-induced oxygen desaturation is mandatory during the execution of exercise tolerance tests calculating the in change in SpO2 during test (mean exercise – basal level)		For two reasons: to prescribe oxygen supplementation if needed and to assess residual disease and associated disability {9} Should be performed with 6MWT {8}

9.4 During exercise tests		Done routinely {9}
and exercise sessions,		
fatigue and dyspnea should		
be assessed though		
psychometric scale (<i>i.e</i> .		
BORG scale or Visual		
Analytic Scale)		
9.5 Because we expected different trajectory of exercise performance recovery, the monitoring of physical performance should be routinely included in the follow-up assessment	Long term prevalence, severity and trajectory of physical impairment after COVID-19 infection are unknown. For this reason, it is strongly recommended to include physical performance tests during follow -up visits. MMG should be aware of the possibility to found disabled patients after COVID-19 infection, in particular in long term ICU stay, post-ARDS patients or in frail patients. During home rehabilitation, at least one test	Agree but we need to come up with a proposed schedule {9}
	of physical performance test must be included as outcome measure and we strongly recommended the use only of validated field tests so as to have repeatable measures (71,72)	

Table 10. Respiratory muscle assessment?

Suggestions	Author's comments	Panelists' comments {rating}
10.1 Prevalence, severity	At present, no studies describe the	SNIP test and Peak cough flow would
and recovery of respiratory	prevalence and severity of respiratory	add important info in terms of
muscle weakness due to	muscle weakness in COVID-19. However,	diaphragm weakness and strength to
COVID-19 are unknown, as	reduced respiratory muscle strength or	cough respectively {8}
well as their impact on	endurance may exist, particularly in patients	
symptoms and disability	who had severe acute respiratory failure or	
	ARDS, with the need for prolonged	
	mechanical ventilation or prolonged	
	weaning, or in case of critical illness, or in	
	presence of comorbidities. In this case, MIP	
	and MEP should be performed as soon as	
	possible (73-75).	
	Future studies should address the	
	prevalence and severity of respiratory	
	muscle weakness, both in terms of strength	
	reduction and endurance impairment. It has	
	been suggested that COVID-19 disease may	
	produce damage in muscle fibers, but it is	
	unknown whether this damage may involve	
	the respiratory muscles. Future studies	
	should also investigate the possibility of a	
	complete recovery of respiratory muscle	
	strength and endurance, and the possible	
	impact on symptoms, disability, and quality	
	of life. (82)	

10.2 Standard MIP/MEP measures are not recommended in the first phase (6-8 weeks) due to infectious risk. When performed, special PPE should be worn and antiviral filter should be placed between mouth/tracheostomy and devices, in order to limit contamination	As advised by the European Respiratory Society, standard measurement of MIP/MEP should be avoided in the first few months, due to the presence of an infectious risk (16,76)	To remember that also the environment in which the measurements are made must be dedicated (patient room?) and it is necessary that it is sanitized between one patient and another {9} It could modify the results, due to the filter. And we should be sure there is negative pressure in the room, but we are not measuring MIP and MEP during neither after pandemic. Snip test should be considered. Also, with a filter {3}
10.3 In infectious patients, alternative modalities for MIP/MEP measurements using disposable devices, or alternative tests (<i>i.e.</i> Single Breath Counting) could be used	If disposable devices for MIP/MEP measurements are not yet available, the validity of alternative procedures for respiratory muscle strength estimation should be investigated. As an alternative, a reduction of vital capacity may be suggestive of respiratory muscle weakness. Alternative measures of vital capacity may be done for example with incentive spirometry or by using the Single Breath Counting test (validated in children's asthma) (77)	This is arbitrary and unknown {5} Could be used, not mandatory {9} The VC measured with graduated incentive spirometry is simpler but more expensive than the single breath count test. This is quick and cheap but not all patients manage to do it correctly {7} In my experience none respiratory muscle weakness was present in this

10.4 MIP/MEP or surrogate measures may be used to set up a respiratory muscle- training program when respiratory muscle weakness is speculated	Specific cases in which respiratory muscle weakness should be documented are patients with a history of severe acute respiratory failure, long-term ICU staying, prolonged weaning, critical illness, or in persistence of resting or exercise-induced dyspnea, or in presence of chronic hypercapnia. MIP/MEP or surrogate may be used to set up a respiratory muscle-training program when weakness is found. As an improvement of respiratory muscle strength is expected, MIP/MEP or surrogate may also be part of the outcome's measures for pulmonary rehabilitation (73,74, 76)	post critical patients. All of them with tracheostomized {5} I express doubts about the use of alternative tests to replace punctual measures {6}
10.5 During the weaning of mechanical ventilation and/or tracheo-cannula, respiratory muscles strength tests (MIP, MEP) are recommended. The measurements should preferably be performed at the cannula (highest value).	In tracheostomized patients, it should be considered that the measurements performed at the cannula stoma are higher than those performed on the mouth.(79-81)	This valid statement does not take into account the patient's previous MIP / MEP: for example, there could be cases of neuromuscular patients who, even with reduced forces, can live without a cannula. Furthermore, the diameter of the cannula could

		influence the outcome of the measurement {8} With viral filters. How about peak cough flow both in tracheotomized and non-patients? {6}
10.6 In mechanical ventilated patients, the estimation of inspiratory muscle strength may be performed through ventilator using Pimax and P0.1 assessment	When the patient is still in mechanical ventilation, a measure of P0.1 or Pimax may be performed using some ventilators and this may be strongly recommended in candidates to weaning or cannula removal (79)	

Suggestions	Author's comments	Panelists' comments {rating}
11.1 Assessment of	The ciliated cells are the primary cells infected in	It is important to assess the mucus
mucus encumbrance or	the conducting airways; the virus propagates	plug but the health care professionals
expectoration difficulties	and migrates down the respiratory tract along	have to use the correct DPI {8}
should be considered in	the conducting airways; elderly and patient with	
all patient reporting pre-	chronic lung condition can have reduced	As always, a forgotten filed for PR
existing hyper-secretive	mucociliary clearance, and this may allow the	{9}
condition, those after	virus to spread to the gas exchange units of the	
extubating or weaning	lung more readily; in the gas exchange units	
from mechanical	COVID-19 infects alveolar type II cells causing	
ventilation, those	pulmonary infiltrates, mostly in peripheral and	
reporting phlegm or	subpleural areas; non-uniformity in surfactant	
sticky mucus and	production and in lung compliance; many	
productive cough	alveolar cells undergo apoptosis and die;	
	recovery will require a vigorous innate and	
	acquired immune response and epithelial	
	regeneration; the aberrant wound healing may	
	lead to more severe scaring and fibrosis than	
	other forms of ARDS and the elderly individuals	
	are particularly at risk because of their	
	diminished immune response and reduced ability	
	to repair the damaged epithelium.	
	Positive pressure mechanical ventilation or	
	artificial airways (orotracheal or tracheostomy	
	tube) can temporary reduce the efficacy of	
	mucociliary system and in general the mucus	
	airway clearance (86-90)	

11.2 Anamnestic data,	Phlegm is not a main symptom in COVID-19	Also, the need for antibiotic treatment
quantity and quality of	infection, however less frequent thick mucus	and microbiological evidence of
expectorated mucus, lung	from coughs (sputum) is present. Sticky	colonization/infection of the airways
sound auscultation and	secretion could also occur in case of prolonged	{9}
reported symptoms	immobilization in hospital. In case of pre-	
should be considered to	existent chronic hyper-secretive pulmonary	
assess the need for an	diseases, patient could experience more sticky	
airway clearance	secretions (83-85)	
augmentation strategy		
11.3 SpO2 measure is		
not directly related to		
airway obstruction and		
mucus encumbrance,		
however could be an		
adjunctive informative		
measure to test the		
efficacy of airway		
clearance maneuvers.		
11.4 Recent Chest X-ray,		
CT-scan or lung		
ultrasound are not a		
direct measure for mucus		
encumbrance, but could		
be informative about		
areas at risk of airway		
clearance impairment		

Suggestions	Author's comments	Panelists' comments {rating}
12.1 It is relevant to	Only a few data are available about nutritional status	
evaluate the nutritional	and COVID-19 infection. However, the consequences	
status of patients	of a hyper-catabolic state secondary to inflammation	
hospitalized for	are known (91,92).	
moderate, severe and		
very severe COVID-19		
infection		
12.2 The severe	The consequences of malnutrition on the prognosis	
inflammation, the	of patients who are invasively or not invasively	
resulting hypercatabolic	ventilated are also known. It necessary to quickly	
state and the drastic	identify the patients at risk of malnutrition through	
reduction of food intake	simple and rapid screening tools. In this situation of	
makes these patients at	emergency, Nutrition Societies have recommended	
risk of malnutrition	to use Nutritional Risk Screening (NRS-2002).	
	Nutritional status evaluation has to include, BMI,	
	blood chemistry parameters (serum albumin,	
	transferrin) and, if possible, hand grip for strength	
	evaluation. All the patient with pneumonia are at risk	
	of malnutrition: the risk is higher when age is >70	
	yrs, or weight loss >5% in the last 3 months or BMI	
	<20.5 or there is reduction of food intake in the last	
	week.	
	Currently there are no evidence-based guidelines for	
	nutritional management of COVID-19 patients (93-	
	96)	

Table 12. How the nutritional status can affect functional recovery?

12.3 Dysphagia		Dysphagia screening is also
screening has to be		simply the observation of the
implemented at the same		patient whiles/he is having a
time as nutritional		meal. Non-medical staff is more
screening		used to spot patients with ab
		ingests problems {9}
		Implemented only in selected, at risk patients {5}
12.4 It is important to	Currently there are no evidence-based guidelines for	Evidence-based and rational
implement a prompt and	nutritional management of COVID-19 patients	nutritional treatment plays a
adequate nutritional	It's important to ensure an adequate nutritional	critical role in the recovery and
assistance in COVID-19	intake and eventual additional protein intake	prognosis of patients with severe
patients	(fortified meals) in rehabilitation patients	COVID-19. COVID-19 can
	Select the most suitable and safest feeding modality	progress to ARDS owing to
	based on patient's clinical problems (NIV and/or	infection, fever, and other
	oxygen therapy, tracheostomy) (97)	causes, which places patients in
		a high catabolic state and leads
		to nutritional metabolic
		disorders. For nutritional risk
		assessment of patients with
		COVID-19, the Nutrition Risk
		Screening (NRS-2002) or
		modified Nutrition Risk in the
		Critically III (NUTRIC) scoring
		tool should be used {9}

12.5 If dysphagia occurs,	If dysphagia is present, it must be promptly treated	Dysphagia screening is also
it must be promptly	with the intervention of the speech therapist and	simply the observation of the
treated	using specially prepared foods. At discharge from	patient whiles/he is having a
	hospital a personalized nutritional program should be	meal. Non-medical staff is more
	proposed to every patient based on in-hospital	used to spot patients with ab
	nutritional evaluation for home patients, nutritional	ingests problems {9}
	intervention aims to increase energy density of home	
	preparations and suggests how to resolve problems	Implemented only in selected, at
	related to dysphagia, dysgeusia and anosmia. The	risk patients {9}
	care giver must be informed and instructed on the	
	nutritional plan recommended to the patient and on	In case of severe malnutrition,
	the precautions to be put in place for dysphagia	first I would resort to the
	Remote intervention by speech therapists may be	nasogastric tube to improve
	agreed.	health conditions (or peg for a
	In presence of Tracheostomy specific screening test	long time) and then I will
	(Modified Evan's blue dye test) + clinical non	introduce swallowing
	instrumental evaluation of dysphagia must be	rehabilitation. I'm not agree to
	performed. If the evaluation for dysphagia is	avoid instrumental evaluation
	positive, consider FEES (fiber endoscopic evaluation	(video-fluoroscopy). I think it is
	swallowing) to set logopedic rehabilitation program	much safer than FEES (less
	Select the most suitable and safest feeding modality	droplets) {9}
	based on patient's clinical problems and diet	
	programs for different levels based on patient's	
	ability to swallow fluids and foods (97-99)	

Suggestions	Author's comments	Panelists' comments {rating}
13.1 To evaluate the QoL it would be appropriate to test the presence of psychopathological disorders (in particular anxiety, depression, sleep disturbance, post-traumatic stress disorder)	In the specific case of COVID-19, the quality of life seems to be strongly conditioned by the need for social distancing and / or quarantine which can favor the onset of isolation and depressive experiences. During this period the quality of life in the post- acute patient suffers so much from the lack of contact with the relatives. The condition of isolation in the hospital environment increases experiences of anxiety, anguish and depression. The evaluation of the QoL must therefore take into account three main aspects: presence of psychopathology, level of autonomy, quality of family support (in the hospital setting we refer to the possibility of activating contact, even if only by telephone, with the family). In order to diagnose a post-traumatic stress disorder, it is necessary that a month has passed since the traumatic event which in this case we identify as the ARDS Acute Respiratory Distress Syndrome (100,102-106,109)	Time is crucial for the use of the appropriate tool. QoL should be assessed after COVID-19 infection, in the acute phase is more a burden of disease weight than a QoL assessment {9} The recommendation is correct but the implication that QoL depends on these psychopath assessments is not necessarily true as well validated measures will take these into account inherently {6}
13.2 It is appropriate to evaluate the patient's level of autonomy	The complete self-sufficiency of the person is necessary to live independently at home without external assistance, increasing self-esteem and affecting the quality of life (107,108)	

Table 13. How to assess quality of life (QoL) and participation during social distancing, quarantine and isolation?

 13.3 It is appropriate to evaluate the quality of the support network (communication possibilities of the patient, stress of the caregiver) 	(101)	Psychologist and Social worker main task {9}
13.4 It is appropriate to have a global measurement of the patient's perceived QoL level	(100, 102-106)	Depends on timing (see above) {9} QoL level is important, but it is difficult to correctly evaluate {9}

Suggestions	Author's comments	Panelists' comments {rating}
14.1 A neuropsychological	The long-term psychological implications of	Not mandatory {7}
assessment should be	infectious diseases should not be ignored	
performed at baseline and	Better understanding of how the intense	Only in selected subjects, based
after PR	systemic immune response to SARS-CoV-2	on initial evaluation (relief of
	infection affects mental health and neurological symptoms	signs and symptoms) {9}
	The longer-term research priorities are to unders	Simple history {3}
	the mechanisms by which SARS-CoV-2 might en	
	the brain (neurotoxic and neurotropic properties the virus) Indicators of vulnerability (such as pre-existing physical or psychological conditions) should be	This may be impractical for many programs without expertise in this area {7}
	considered	Not at baseline, in particular cases
	Understand the psychological (<i>e.g.</i> , coping),	{9}
	physiological (<i>e.g.</i> , sleep and nutrition), and	
	structural (<i>e.g.</i> , work shifts and daily routines)	
	factors that protect or adversely affect mental	
	health (110-114)	
14.2 Psychosocial effects	It is relevant understand how to enhance	Not mandatory, on a clinical basis
(such as depression, anxiety,	motivation, self-efficacy and self-care;	{7}
psychosomatic	understand how we optimize positive social	
preoccupations, insomnia)	resources and enhance resilience in the face of	
should be measured	stress; determine the efficacy of	
	mechanistically based digital and non-digital	
	interventions and evaluate optimal model(s) of	
	implementation; develop novel interventions to	

Table 14. How to identify emotional aspects influencing participation to PR program?

14.3 Symptoms of Post- Traumatic Stress Disorder (PTSD) should be considered	protect mental wellbeing, including those based on positive mechanistically based components, such as altruism and prosocial behavior and understanding of online life Neuropsychological functions should be monitored and retested after PR Mental health services should be provided in the context of patient isolation, which highlights the role of telehealth (through videoconference, e-mail, telephone, or smartphone apps) even if the efficacy of the telemedicine interventions in case of COVID-19 has yet to be proven (115-118) Before and after PR program all these aspects should be considered and/or measured Psychosocial effects (<i>e.g.</i> depression, anxiety, psychosomatic preoccupations, insomnia) Symptoms of Post-Traumatic Stress Disorder (PTSD) (116)	Not mandatory if not in a protocol, no evidence that this improves care after hospitalization. We would need an "integrated care program" across different health care settings (primary care, hospital, rehab, back home, <i>etc</i> .) that is not in place for COVID-19 and not even for COPD, <i>etc</i> . {7}
14.4 The long-term psychological and psychosocial implications of infectious diseases should not be ignored	(120-122)	We need studies {9}

14.5 A peculiar attention	Safety, social isolation and well- being of all	
should be played to	individuals (causing, for example, insecurity,	
caregiver and family of those	confusion, emotional isolation, and stigma)	
in quarantine because	Caregiver and family's burden, worry and fears	
affected by COVID-19	should be explored.	
	Safety, social isolation and well- being of all	
	individuals (causing, for example, insecurity,	
	confusion, emotional isolation, and stigma)	
	Caregiver and family's burden, worry and fears	
	should be explored (123)	

Table 15. How to manage oxygen-therapy and interface? how to dose and scale oxygen at rest and during physical activity?

Suggestions	Author's comments	Panelists' comments {rating}
15.1 Oxygen need at rest,	Oxygen need at rest and during effort should	
during effort and sleep	be reassessed after the PR program and	
should be assessed before	oxygen need during sleep should be	
setting up the PR program	considered in the follow up	
15.2 Suitable interface (in	Suitable interface (in term of efficacy and	And titration should be done with
term of efficacy and patient	patient tolerance) should be tested before	6mwt using interface and
tolerance) should be tested	setting up the PR program Treatment targets	modality of device is going to be
before setting up the PR	may vary depending on the presentation of	prescribed to the patient {9}
program	the patient. Once a patient is stable, SpO2	
	target is >90% in non-pregnant adults and	
	92% to 95% in pregnant patients. In adults	
	with COVID-19 and acute hypoxemic	
	respiratory failure, the SpO2 target should	
	not be maintained >96%.	
	High flow oxygen therapy (HFOT) could be an	
	additional tool to dose oxygen during	
	stationary exercise	
15.3 Oxygen need during	Blood gas analysis should be performed	Not necessary for 6MW test to be
effort should be assessed	before PR program and during the follow up.	used for oxygen assessment.
through standardized tests	Oxygen saturation measurement should be	Shorter time is fine {7}
(6-minute walk test or other	performed at rest, during exercise and at the	
field tests) and reassessed	end of each PR session by pulse oximeter.	
during the PR program based	Oxygen saturation trend should be recorded	
on exercise progression	during PR program (at home keep a diary).	
	Use an auricular or forehead SpO2 sensor	

	when finger access is not reliable, <i>i.e.</i> in case	
	of vascular disease (124)	
15.4 Specific precautions	Specific precautions about the exhaled air	Among the precautions we can
about the exhaled air	dispersion distance should be taken into	remember that the patient has to
dispersion distance should be	account during oxygen administration (1)	wear well cannula/mask and
taken into account during		always wear the surgical mask
oxygen administration		{9}

Suggestions	Author's comments	Panelists' comments {rating}
16.1 Rehabilitation in post-	COVID-19 produces impairment of exercise	This is true also for many other
acute COVID-19 could	tolerance, muscle weakness, dyspnea, and	not-newly-emerged (as COVID-19
improve symptoms,	fatigue. As it happens in other pulmonary	is) conditions {9}
functional capacity and	diseases, rehabilitation is expected to	
quality of life; however, the	improve symptoms, functional capacity and	Active limb exercises should be
best exercise program is still	quality of life. Therefore, the main aims of	accompanied by progressive
unknown	rehabilitation should include the improvement	muscle strengthening (suggested
	of patient's ability to sustain physical activity,	program: 8-12 repetition-
	reducing exercise-induced dyspnea and	maximum load for 8-12 repetitions,
	fatigue (125)	1 to 3 sets with 2 min rest between
	Given that in SARS a reduction of exercise	sets, 3 sessions a week for 6
	capacity had been documented in the long-	weeks). Neuromuscular electrical
	term after infection, it should be investigated	stimulation can be used to assist
	also in COVID-19 whether long-term	with strengthening. Aerobic
	performance impairment may exist, and its	reconditioning can be accomplished
	impact on patients' quality of life. Persistent	with overland walking, cycle or arm
	disabilities may remain in COVID-19	ergometry, or a NuStep cross
	survivors, but the prevalence, severity, and	trainer. Initially, aerobic activity
	impact of these disabilities should be also	should be kept to less than 3
	investigated.	metabolic equivalents of task.
	Future studies should establish the expected	Later, progressive aerobic exercise
	improvement of exercise tolerance and	should be increased to 20-30 min,
	whether it is comparable to that observed in	3-5 times a week. Balance work
	other chronic respiratory diseases. The	should be incorporated. Studies on
	response of COVID-19 subjects to moderate-	the effectiveness of exercise
	to-high intensity exercise training, as well as	interventions after SARS showed

Table 16. Which FITT for exercise programs.

	have fits for an dimension of the
the response to alternative types of training	benefits for endurance, maximum
(ie. Interval training) should be investigated.	oxygen consumption, and strength.
Future studies should define the long-term	(135)
impact of exercise performance impairment	The intensity of daily exercise
on quality of life, as well as the prevalence	should be maintained between rest
and extent of remaining permanent	[1.0 metabolic equivalents (METs)]
disabilities in COVID-19 survivors (133,134)	and light physical activity (<3.0
	METs) with a duration of 15-45
	min; intermittent exercise can also
	be performed (49)
	Aerobic exercises are customized
	according to the patient's
	underlying disease and residual
	dysfunction. These exercises
	include walking, brisk walking, slow
	jogging, and swimming, and begin
	at a low intensity before
	progressively increasing in
	intensity and duration. A total of 3–
	5 sessions are carried out per
	week, and each session lasts for
	20-30 min. Patients who are prone
	to fatigue should perform
	intermittent exercises. Strength
	training: progressive resistance
	training is recommended for
	strength training. The training load
	for each target muscle group is 8–
	ior each target muscle group is 8-

		12 repetitions maximum (RM); i.e., each group will repeat 8–12 movements, 1–3 sets/time, with 2- minute rest intervals between sets, with a frequency of 2–3 sessions/week for 6 weeks. Approximately 5%–10% is increased per week. Balance training: balance training should be carried out in patients with comorbid balance disorders, including hands-free balance training under the guidance of the rehabilitation therapist and balance trainer (136) {7}
16.2 The exercise training principles used in patients with chronic lung diseases can be considered in post-COVID-19 patients	COVID-19 produces impairment of exercise tolerance, muscle weakness, dyspnea, and fatigue. As it happens in other pulmonary diseases, rehabilitation is expected to improve symptoms, functional capacity and quality of life. Therefore, the main aims of rehabilitation should include the improvement of patient's ability to sustain physical activity, reducing exercise-induced dyspnea and fatigue (125,16)	As a first step {9} Adequate exercise training must be defined {6}
16.3 Aerobic exercise <3.0 METs with progressive increase of intensity based on	In the first few weeks of infection, in case of mild/moderate disease, the aim of physical activity interventions is maintaining a normal	

symptoms (BORG fatigue	physical function. Therefore, only low-	
and/or dyspnea below the	intensity exercise is recommended in this	
score of 3) is recommended	phase. Due to the presence to both exercise	
in patients with mild or no	fatigue and muscle weakness/pain, an	
disability (SPPB >10; Barthel	intervention targeted to both endurance	
index >70) in order to	capacity and muscle strengthening is advised.	
restore a normal physical	Once the survivor to COVID-19 is no longer	
function.	infectious, already existing principles for	
	exercise training in the adult population	
	should be followed.	
	In the domiciliary context, it is not known	
	whether unsupervised exercise should be	
	advised, as well as what are the best	
	indications on exercise intensity, frequency,	
	duration, monitoring needs, and progression	
	of the workload. In absence of previous	
	formal assessment that allows producing a	
	specific exercise prescription, low-intensity	
	exercise is recommended for at least the first	
	6-8 weeks in patient's home (126-128)	
16.4 Patients with moderate	When infected patients have moderate/severe	I am not sure it is "safe" to make
or severe disability (SPPB	disability, both due to COVID-19 itself or to	distinction between physiotherapy
<10; Barthel index <70)	concomitant/preexisting conditions, a	for mild patients and
need a comprehensive	personalized rehabilitation program aiming to	comprehensive PR program for
pulmonary rehabilitation	recover functional autonomy, walking ability,	moderate to severe. It makes
program in order to improve	balance and strength is recommended,	confusion and can be used to
autonomy, peripheral and	according to an initial complete and	dismantle the evidence for rehab
respiratory muscle strength,	multidimensional baseline assessment.	as a whole {5}

balance, walking ability,	In case of critical illness, the intervention of	
symptoms and quality of life	physical activity has the aim of preventing	
	the consequences (both physical and	
	cognitive) of prolonged immobilization.	
	Already existing indications on early	
	mobilization should be considered, as well as	
	existing algorithms for progressive	
	mobilization dedicated to the critically ill, to	
	weaned patients, and to those with prolonged	
	weaning (129,130)	
16.5 The exercise program	Considering their potentially dangerous	Potential environmental
should include aerobic	consequences, inactivity and sedentary time	contamination during aerobic
exercises (cycling, treadmill,	should be avoided also in COVID-19	exercises need to be considered.
free walking) and resistance	survivors. Advices on how and when to	(distancing between patients,
strength training	perform physical activity should be given to	aeration of the rooms, etc.) {7}
	both hospitalized and discharged home	
	patients, adapting the indications to each	
	specific infective status and personal context	
	(131)	
16.6 SpO ₂ monitoring during	As a consistent portion of COVID-19 survivors	I'm agree but I think the SpO2 cut
exercise is mandatory and	shows exercise-induced desaturation,	off could be lower (not 93% but
subsequent oxygen	exercise and physical activity should be	90%) {7}
supplementation could be	performed with SpO ₂ monitoring. Oxygen	
prescribed when $SpO_2 < 93\%$,	supplementation is advised in case of SpO_2	Oxygen supplementation could be
being aware of potential	<0% (16,126)	prescribed when $SpO_2 < 90\% \{7\}$
environmental contamination		

		Not for each session-that is a waste of time. Stop monitoring as patient becomes stable {3} I am not clear that <93% is a universal criterion. In US, SpO ₂ <89% qualifies for supplemental O ₂ {4}
16.7 NIV during exercise training should be used with specific cautions to avoid the risk of environmental contamination	Specific recommendations are given in case of infectious patients, in order to limit/prevent environmental contamination. NIV and oxygen produced droplet dispersion, so the use of NIV is discouraged, and oxygen supplementation must be managed with caution (see specific indications) (132)	Even considering environmental contamination a primary matter, if a patient needs NIV to perform exercise compromises should be considered: if the patient is in home isolation after discharge the contamination risk could be less important. Specific infective status and personal context should be investigated to avoid limitation in PR {4} I think it could be possible to use NIMV if we avoid humidification and we use non-vented oral-nasal mask+ antiviral filter between mask and whisper {6}

		people, may be this
		recommendation has not to be
		followed {7}
16.8 In case of	In case of tracheostomy, the use of speaking	I'm agree only if the patient is
tracheostomy, the use of	valve during exercise should be preferred to	wearing a surgical mask {8}
speaking valve during	open HME filters even though it may produce	
exercise should be preferred	further dyspnea or fatigue. A balance	Should add why you are making
to open HME filters	between the infectious risk and the possibility	the recommendation (for infection
	to exacerbate respiratory muscle fatigue	control purposes) to the statement
	should be considered (132)	{6}

Suggestions	Author's comments	Panelists' comments {rating}
17.1 Individualized	Chest expansion breathing control exercises i.e.	Unclear benefit in the post-acute
recruitment strategies	slow inspiration until the higher volume tolerated,	setting {5}
such as chest	tele-inspiratory pause, slow expiration also with a	
expansion breathing	slight resistance; posture positioning i.e. lateral	
control exercises	position with upper arm elevated, sustained prone	
associated to posture	position, forward leaning. In the gas exchange	
positioning should be	units, COVID-19 infects alveolar type II cells	
considered as part of	causing pulmonary infiltrates, mostly in peripheral	
PR program	and subpleural areas; but the long-term fibrotic	
	sequalae (reticulation, interlobular septal	
	thickening, and traction bronchiectasis) are not	
	described and only can be supposed (60,83).	
	Actually, there is few data about mid- and long-	
	term effects on lung and chest compliance after	
	COVID-19 acute phase. The lung damage of	
	COVID-19 lead to the impairment of alveolar air	
	exchange: during the acute phase lungs shows an	
	impressive compliance non-uniformity (8).	
	Fatigue, chest tightness, dyspnea, low VT, need to	
	yawn with the impossibility to reach a deep breath	
	are reported from some post-acute COVID-19	
	patients after discharge. Severe fatigue is highly	
	prevalent in ILD patients and is associated with	
	dyspnea (137).	
	Breathing exercises (breathing control) appears to	
	complement exercise training towards improved	

Table 17. When and which lung recruitment exercises? which strategies and devices?

	dyspnea and HRQL in patients with IPF (138). Several mechanisms used in ACTs optimize ventilation to obstructed lung units. Moving a patient into different positions affects ventilation in two different ways. First, a change in body position alters regional ventilation as noted above. Second, by increasing the mobility of a patient, oxygen demand increases, resulting in a corresponding increase in minute ventilation and lung volumes. The resultant increase in ventilation allows air to move into obstructed lung units by interdependence and collateral ventilation (139). Forward leaning might optimize pulmonary mechanics (140)	
17.2 Posture positioning should be		Can be chosen {7}
chosen in according to chest X-ray/CT scan (if		Is this in the acute setting? {5}
any), auscultation,		
SpO_2 change and		
patient reported		
symptoms		
17.3 Continuous or	The breathing pattern is altered during PEP	Always under prescription or
temporary positive	breathing. PEP have been shown to increase VT	supervision of the Respiratory
expiratory pressure	and decrease respiratory frequency by an increase	Physiotherapist {9}
(PEP, TPEP) devices,	in both inspiratory and expiratory muscle activity.	
also including visual or	A temporary increase in FRC has been shown,	Risk or aerosolization {4}

acoustic feedback,	with a progressive increase in FRC with increasing	
should be considered,	PEP.	Is this in the acute setting? {5}
alone or in combination	The role of the collateral airways is unclear but	
with posture	has been suggested to be a possible part of the	
	explanation of reinflation of collapsed airways.	
	Increased lung volumes and gas exchange and	
	decreased atelectasis have been reported after	
	PEP breathing in healthy subjects, in patients	
	undergoing surgery, in patients with cystic fibrosis	
	(CF), with pulmonary disease or neuromuscular	
	disease.	
	In clinical practice, the instruction to the	
	spontaneously breathing patient how to use an	
	expiratory resistance is of major importance since	
	it varies. Different breathing patterns during PEP	
	increase or reduce expiratory flow, result in	
	movement of EPP centrally or peripherally and can	
	increase or decrease lung volume. It is therefore	
	necessary to give the right instructions to obtain	
	the desired effects. As the different PEP	
	techniques are being used by diverse patient	
	groups it is not possible to give standard	
	instructions. Based on the information given in	
	this article the instructions have to be adjusted to	
	give the optimal effect in the specific context	
	(141).	
	A little increase in expiratory pressure during the	
	respiratory cycle may improve the distribution of	

	alveolar ventilation without mechanical stress injury in the bronchial tree or lung itself. Preliminary data suggest that temporary positive expiratory pressure improves lung volumes and speeds up the improvement of bronchial encumbrance in patients with lung diseases and hypersecretion (142-144)	
17.4 An inspiratory flow-dependent	This technique should be used carefully in weaker patients and not with the purpose of inspiratory	Expiratory time and expiratory pressure should also take into
resistance can be used to slow down inspiratory flow and to increase inspiratory	muscle training. Threshold resistance is less tolerated and should be avoided for this purpose Resistive inspiratory maneuver may increase inspiratory airflow to more peripheral airways.	account. Due to the effect on opening airways and the effect on gas exchange {5}
time, enhancing pleural traction on peripheral	This leads to an extended inspiratory time secondary to the reduced airflow at the mouth	Not necessary {5}
lung regions	(145)	That is a true statement but unclear relationship to the rehab setting {5}

Suggestions	Author's comments	Panelists' comments {rating}
18.1 Aerosol/Nebulizer	SARS-CoV-2 is transmitted via respiratory	Aerosol/nebulizer treatments,
treatment	droplets. Nebulization enhance droplets dispersion	where strictly necessary, should be
administration is NOT	and generate aerosol increasing the risk of	administrated with carefulness {3}
recommended	infection transmission. How we can administer	
	aerosol therapy to patients that need it,	The aerosol can be administered in
	minimizing the risk of spreading infected material,	many ways, perhaps more
	is unknow (146,147)	compatible with the reduction of
		the infectious disease risk {6}
18.2 If patient is		It's hard to determine the quantity
mechanically		of medication that can actually
ventilated, inhalation		reach the target area considering:
therapy should be		humidification system where
administered during		provided, dispersion in the circuit,
mechanical ventilation,		variability of flow and regional
using metered-dose		ventilation. On the other hand,
inhalers (MDI) or		bypassing upper airway and
ultrasonic nebulizers		prolong the time of administration
connected to the		could partially balance the situation
mechanical ventilator in		{4}
a closed circuit is		
recommended, without		In special conditions (<i>e.g.</i> may be
removing the		necessary to use nebulized
antimicrobial filter on		aerosols even if the patients are
the expiratory branch		not mechanically ventilated. If you
of the circuit		cannot avoid them, it may be

Table 18. How to manage aerosol-therapy and devices? how to use them safely?

useful to know the following data
and indications. Unlike inhalers,
nebulizers can deliver a variety of
drug formulations that may be
needed for patients with COVID-
19. Although conventional jet
nebulizers are commonly used to
deliver aerosolized medications,
they may also spew 2/3 of the
emitted aerosol into the ambient
environment. In this case,
healthcare providers are exposed
not only the inhaled medications
but also to the droplets from the
patient's airways and lungs. In
addition, the driving gas up to
10 L/min can increase the
dispersion of both medical and
bioaerosols. If aerosols generated
with nebulizers carry the virus
during exhalation and transmit it to
the hospital environment, health
care providers and other patients
are under the risk of infection.
Recently, some companies
manufacturing jet nebulizers
provided filters to use with their
device in the treatment of patients

with COVID-19. While the
placement of a filter to the
nebulizer was 93% effective in
capturing exhaled aerosol droplets
and will reduce second hand
exposure of aerosol medication to
health care professionals, the
efficiency of these filters in
preventing the transmission and
the magnitude of the risk acquiring
coronavirus through filtered
nebulizers are not fully known.
Also, current publications on
fugitive emissions are based on in
vitro studies that may not be a true
representative of a real exhalation
in coronavirus infected patients.
Using the high-efficiency
particulate air (HEPA) filters with
nebulizers might be a good option
during aerosol drug delivery to
patients with COVID-19. Due to a
greater surface of filtration, they
are more effective in collecting
droplets compared to other
bacterial filters available on the
market. However, their bulky
designs and requirement to use

various adapters to attach them to
nebulizers make it difficult to use
them compared to low volume
bacteria filters. Interface selection
is as important as device selection
in aerosol therapy. Using a
facemask is not recommended for
aerosol therapy in the treatment of
coronavirus infected patients.
When a jet nebulizer is combined
with a facemask, the airflow of jet
nebulizer will force aerosol out of
the device during expiration and
breath-hold. McGrath et al. showed
that the face mask had the
highest-time averaged fugitively
emitted aerosol concentration
when a jet nebulizer was combined
with a facemask. They also
reported that placing a filter on the
exhalation port of the mouthpiece
lead to the lowest concentration
(151). Therefore, the jet nebulizers
need to be used with the
mouthpiece, and clinicians should
attach filters or one-way valves to
the large bore tubing of the
nebulizer to prevent fugitive

emissions during aerosol therapy.
Another option would be to use a
mesh nebulizer combined with the
mouthpiece in patients with
COVID-19. In this case, clinicians
should add a filter to the other end
of the mouthpiece to eliminate the
release of aerosols to the
environment. Therefore, delivering
aerosolized medications via jet
nebulizer or MDI will not be
appropriate due to the breakage of
the circuits for the placement of
the device on the ventilator circuit
before aerosol therapy. A recently
published Chinese guideline
suggests using the mesh nebulizer
in critically ill patients with COVID-
19 receiving ventilator support.
Mesh nebulizers can stay in-line for
up to 28 days, and reservoir design
allows adding medication without
requiring the ventilator circuit to be
broken for aerosol drug delivery.
Unlike jet nebulizer, the medication
reservoir of mesh nebulizers is
isolated from the breathing circuit
that eliminates the nebulization of
that emminates the nebulization of

contaminated fluids. Also, placing
the mesh or jet nebulizer prior to
the humidifier can improve the
efficiency of the treatment and
further reduce retrograde
contamination from the patient.
So, these are some practical
strategies for aerosol drug delivery
to intensive-care patients with
COVID-19 and so to the
mechanically ventilated ones. 1.Do
not use jet nebulizer or MDI
aerosol delivery to ventilator-
dependent patients with COVID-19
due to the breakage of the circuits
for the placement of the device
before therapy. 2. Use mesh
nebulizers in critically ill patients
with COVID-19 receiving ventilator
support as they can stay in-line for
up to 28 days, and reservoir design
allows adding medication without
requiring the ventilator circuit to be
broken for aerosol drug delivery.
Unlike jet nebulizer, the medication
reservoir of mesh nebulizers is
isolated from the breathing circuit
that eliminates the nebulization of

18.3 To deliver inhaled therapy during mechanical ventilation, the use metered-dose inhalers (MDI) or ultrasonic nebulizers connected to the mechanical ventilator in a closed circuit is recommended, without removing the antimicrobial filter on the expiratory limb of the circuit	If patients are mechanically ventilated, deliver inhaled therapy during mechanical ventilation, using dry inhalers or ultrasonic nebulizers connected to the mechanical ventilator in a closed circuit, without removing the antimicrobial filter on the expiratory branch of the circuit (148)	contaminated fluids. 3. Place the mesh nebulizer prior to the humidifier can improve the efficiency of the treatment and further reduce retrograde contamination from the patient. 4. Attach a HEPA filter to the expiratory limb of the ventilator to reduce second hand aerosol exposure and prevent the transmission of infectious droplet nuclei through the ventilators. (151) {6} If the patient is ventilated with a monotube circuit with a NV mask, put the nebulizers device between the mask and the filter {9} I surely do not know how to use DPI's during mechanical ventilation so I cannot recommend this type of inhalation technique {6}
--	--	--

18.4 If bronchodilation	(149,150)	With an antibacterial filter {9}
is needed, metered-		
dose inhalers (MDI)		In mild-patients with COVID-19
with spacer or dry		who are awake and can perform
powder inhaler (DPI)		specific breathing techniques with
should be considered		inhalers, clinicians should consider
		using pressurized metered-dose
		inhalers (pMDIs) and dry powder
		inhalers (DPIs) for aerosol drug
		delivery instead of nebulizers. It is
		essential to use a valved-holding
		chamber with pMDIs during
		treatment. Also, priming before
		first use, pMDI actuation at the
		beginning of inspiration, hand
		breath coordination, inhalation with
		low inspiratory flows, and breath-
		hold is vital for the efficiency of
		MDI. Since DPIs are breath-
		actuated inhalers, clinicians should
		emphasize the specific inspiratory
		flow needed to draw medication
		from the device and disperse the
		particles. Thus, patients can
		operate the DPI correctly and
		receive therapeutic benefit from
		the drug. However, patients with
		acute respiratory failure may not

		generate the adequate inspiratory flow needed for the specific DPI used for treatment. In addition, if the inhaler increases cough, other alternatives should be pursued. Using nebulizers with a mouthpiece or high flow nasal cannula should be considered in such cases (151) {3}
18.5 DPIs are preferred if patient's inspiratory capacity is sufficient to activate the inhaler	150)	

Suggestions	Author's comments	Panelists' comments {rating}
19.1 Airway clearance	Although no firm conclusions can be drawn	Add if you agree also the vacuum
augmentation strategies	regarding the role of ACT's in their	system for tracheostomized
and techniques (ACTs)	management, this intervention improved the	patients to reduce rate of invasive
should be continued, with	yield of specimens for microbial analysis and	aspirations (156) {9}
adaptation if needed, in	facilitated pathogen-directed antimicrobial	
chronic hypersecretive	therapy. These findings suggest that a	
patients and should be	systematic physiotherapy approach including	
considered for subject	optimization of airway clearance can benefit	
experiencing phlegm	patients with parenchymal lung disease (152)	
and/or productive cough		
19.2 In hypersecretive	Methods of utilizing expiratory airflow to	
patients, the use of	enhance secretion removal. Increasing the	
continuous or temporary	velocity of the expiratory airflow in such a way	
positive expiratory	as to create high shearing forces at the airway	
pressure devices, with or	walls, and high kinetic energy that enhances	
without oscillation, (PEP,	the cephalad movement of secretions is a	
TPEP, OPEP) should be	second key mechanism to mobilize airway	
considered, alone or in	secretions. [] in clinical practice, the	
combination with lung	instruction to the spontaneously breathing	
expansion strategies, to	patient how to use an expiratory resistance is	
enhance lung volume	of major importance since it varies. Different	
recruitment, to better	breathing patterns during PEP increase or	
control the expiration flow	reduce expiratory flow, result in movement of	
and to facilitate peripheral	EPP centrally or peripherally and can increase	
	or decrease lung volume. It is therefore	

Table 19. When and which strategies and devices for bronchial hygiene?

and proximal mucus	necessary to give the right instructions to	
mobilization	, 5 5	
mobilization 19.3 Flow-dependent low resistance PEP systems, with an antibacterial filter on expiration circuit, are more tolerated and should be preferred to high resistance and threshold- PEP, mostly in weaker or symptomatic patients	obtain the desired effects (141) One of the other ways of removing excess sputum from the airways is by increasing airflow along the airways. During normal tidal breathing the airflow can be artificially increased by applying a venturi effect within a breathing circuit, and this increase in the velocity of the air can enhance the movement of sputum. This is achieved because the movement of air above a layer of mucus develops a shearing force over the surface of this liquid layer. When the shearing force	
	exceeds the surface tension in the mucous layer, the mucus starts to move in the direction of the air flow (153)	
19.4 Since cough is one of the most annoying symptoms in COVID-19 lung involvement and can cause dyspnea or chest pain, forced expiratory flows (Huffs) should be preferred to expectorate	As the mucus moves up the bronchial tree, it will eventually be swallowed. Importantly, this effect can be achieved with minimal discomfort and without the need to cough. Where a patient's clinical condition is deteriorating and they have fatigued muscles, the cough PEF may well be reduced to the extent that clearing secretions is inhibited significantly. A device that removes excessive airway secretions only under tidal breathing conditions would obviate the need for cough (153)	

19.5 Among ACTs, those that enable patient to auto-treatment should be preferred	The selection of the techniques/devices can be influenced by the clinical experience and confidence of the pulmonary rehabilitation clinician, so a trial can be performed to identify the best strategy for an individual patient, considering subjective and objective improvements (145,154)	
19.6 Jet/mesh nebulizer (with filters on the exhalation port and mouthpiece) and humidification should be considered in association to airway clearance intervention	Jet/mesh nebulizer (with filters on the exhalation port and mouthpiece) and humidification should be considered in association to airway clearance intervention.	Usually humidification is the best choice {7}
19.7 During invasive mechanical ventilation suctioning should be performed with a closed suction system and an in- line viral filter	(6,155)	

Suggestions	Author's comments	Panelists' comments {rating}
20.1 Respiratory muscle training is not recommended routinely, but it should be	Respiratory muscle training should be dedicated to those patients in whom respiratory muscle weakness is found or at	I did not find these patients in my experience {6}
but it should be administered whenever respiratory muscle weakness is detected,	least suspected. It may cover an important role in decannulation and weaning from mechanical ventilation (73,74,157,158)	
particularly in patients candidate to decannulation or persistent dyspnea		
20.2 The type, efficacy and duration of respiratory muscle training in COVID- 19, either in the post-acute phase or in the long-term at patient's home, has still to be investigated	Recommended training programs dedicated to COVID-19 have not been studied yet, and future studies should define the best FITT. Generally, two types of respiratory muscle training are possible: inspiratory muscle training (IMT) with resistive load devices, or isocapnic hyperpnea. When MIP/MEP measurement is available, standard training protocols for inspiratory muscle training starting at an intensity of 30% of MIP should be administered. (159) Regarding the role of domiciliary respiratory muscle training, it may be performed with the same recommendations of modalities and	

Table 20. Have respiratory muscle training a role in the program?

20.3 The Inspiratory	muscle impairment, as well as its possible recovery, are unknown, it is not possible to establish definitely whether respiratory muscle training should be recommended or not in the long-term. It is advisable that the monitoring and training of respiratory muscles should be continued at home until strength, endurance, or symptoms, are normalized. Future studies should investigate the appropriateness and efficacy of domiciliary respiratory muscle training, as well as the need for supervision and monitoring. When specific measures of respiratory muscle	I agree only when IMT is indicated
Muscle raining should be	strength are not available, we have suggested	{9}
started at low intensity.	to start at low intensity (i.e. at 30% MIP or at	
The progression must be	the level where the patient can perform 10	
guided by dyspnea/fatigue and by the monitoring of	breaths with low dyspnea / fatigue) and progressing it according to symptoms.	
vital signs	Moderate dyspnea/fatigue has been suggested	
	as target for training in this case. The	
	progression must be guided by dyspnea /	
	fatigue and by the monitoring of vital signs.	
	The need for monitoring the respiratory muscle	
	training session is unknown. We suggested the	
	monitoring of standard vital signs (SpO2, heart	
	rate, respiratory rate), symptoms (dyspnea	
	and fatigue), and any sign of respiratory	
	distress. We recommend also stopping the	

	session of respiratory muscle training in case	
	of severe fatigue or dyspnea, or protectively	
	when SpO2 drops under 92% (159)	
20.4 MIP/MEP or surrogate	As respiratory muscle training has the aim of	And this is a limiting factor {9}
measures should be	improving respiratory muscle strength or	
considered as main	endurance, the measure of MIP/MEP or	Before to treat respiratory muscle,
outcome measures for	surrogate is recommended as main outcome	we should of course, evaluate them.
respiratory muscle training	measures. The impact on exercise-induced	(161) {7}
	dyspnea measured during field exercise tests	
	is also recommended, to establish whether the	Recommend against IMT {1}
	improvement of strength translated in an	
	improvement of perceived symptoms (160)	
20.5 Respiratory muscle	Due to infectious risks, the respiratory muscle	If used, we always should think in
training should be	training should be performed using disposable	protect the device and the air.{7}
performed using disposable	dedicated devices. For this reason, as no	
dedicated devices	disposable devices are available for respiratory	Recommend against IMT {7}
	muscle endurance training, we do not	
	recommend any endurance training program in	
	infectious patients (78)	

Suggestions	Author's comments	Panelists' comments {rating}
21.1 Tele-rehabilitation (TR) could represents the appropriate response in the post-acute phase by combining need of PR with need for social distancing	The ideal candidate to refer to TR, duration of the rehabilitation intervention, demonstration of efficacy equivalent to traditional rehabilitation, as demonstrated for COPD, Rehabilitation program (FITT) to be applied and Cost- effectiveness is unknown. The newly discovered Coronavirus (COVID-19) and social distancing has put telehealth (tele- coaching/tele-monitoring/telerehabilitation) on the front lines. There are two main components of TR services: rehabilitation service (clinical application) and telecommunication/information technology. The support of wireless sensors, computers, software and communications systems (such as videoconferencing, email, apps, web-based communication, and wearable technology) are needed to develop a telerehabilitation service	I agree on the good background but we need studies on COVID- 19 patients {9} Must be stressed that data is lacking and integrity with significant oversight of these programs must be maintained for positive outcomes {7}
21.2 TR may allow to increase the accessibility of PR eliminating issues of transport, travel, their associated costs and weather	(162-165)	Accessibility is also related to reimbursement for tele rehab programs and staff dedicated {9}

Table 21. Is tele-coaching/tele-monitoring/telerehabilitation possible, effective and safe for these patients?

21.3 TR should be adopted	Monitoring should be done through wearable	An individualized program with
in patients with mild to	technology and wireless devices. Vital	TR can be valid as a PR $\{6\}$
moderate disabilities needs	parameters as SpO2, FC, PA, FR should be	I think you are confusing
for frequent monitoring,	recorded before the start of the telerehabilitation	telerehabilitation with
with residual disability after	intervention and then monitored daily, in rest	telemonitoring- monitoring is
PR residing in isolated areas	conditions and during exercise. Symptoms by	important but w/o structured
or without availability of	dedicated psychometric scale (<i>i.e.</i> BORG scale or	exercise and increasing intensity
standard PR program	VAS) could be used to tailor exercise. ECG is	it is not rehab {2}
	recommended in patients with concomitant	
	cardiac disease before the start of the	
	rehabilitation process. At least a weekly contact	
	by videocall or phone in order to verify patient's	
	adherence to rehabilitation sessions and quality	
	of signals is needed (166-168)	
21.4 Vital parameters	Dyspnea (<i>i.e</i> . BARTHEL dyspnea Index), ADL	Daily or as needed {9}
(SpO2, FC, PA, FR) as	assessment (<i>i.e.</i> BARTHEL Index), physical	
symptoms should be	performance (<i>i.e</i> . SPPB), effort tolerance (<i>i.e</i> . 6-	Not necessary to over-record
recorded before the start of	min walking test), quality of life (<i>i.e</i> . EuroQoL)	data. Time consuming to staff as
the telerehabilitation	and anxiety/depression scale (HADS scale)	the data must also be interpreted
intervention and then	should be recorded before the start of the	in real time. {3}
monitored daily	telerehabilitation intervention and at 3 and 6	
	months after the end of TR program.	
21.5 Proper training of		
health professionals		
involved and the verification		
of the technological		
requirements, especially at		

the patient's home, are	
required	
21.6 Adequate caregiver	
support could be necessary	
in case of residual disability	
or for technological setting	
up	

Table 22. When and what kind of re-assessment is recommended? when a multidisciplinary follow-up is required? in which setting?

Suggestions	Author's comments	Panelists' comments {rating}
22.1 The reassessment	The reassessment should be performed at the	it is a good working hypothesis
should be performed at the	end of the post-acute phase, before the transfer	{9}
end of the post-acute	to another location (rehabilitation institute for	
phase, before the transfer	intensive respiratory rehabilitation or home) It	I agree with this recommendation b
to another location	must include an assessment of: oxygen	think that people sent to home have
(rehabilitation institute for	requirements and ventilatory support;	continue to monitor their Vital signs
intensive respiratory	swallowing and speech skills; motor skills and	and subjective symptoms in order to
rehabilitation or home) and	autonomy in daily life activities; comorbidities	contact their clinicians as soon as
therefore every 3 months	(e.g. cardiovascular, psychiatric,	possible, if necessary {7}
for 1 year in more severe	neuropsychological); nutritional status. In this	
cases	context, the role of rehabilitation specialists is	
	crucial. Lung function test may be performed no	
	earlier than 2 months. The setting should be	
	chosen based on the characteristics of the	
	patients: an hospital setting (rehabilitation	
	institute for intensive rehabilitation) can be	
	indicated in patients who after the post-acute	
	phase have: 1) tracheostomy, CPAP or BIPAP,	
	oxygen therapy at rest in order to assess their	
	need for long-term continuation; 2) extra-	
	pulmonary comorbidities (e.g. cardiovascular,	
	psychiatric, neuropsychological) or severe	
	disability with lack of autonomy in the activities	
	of daily life, to allow their correct classification	

	and treatment and restore the best degree of autonomy in the activities of daily life. A home setting can be indicated in patients who after the post-acute phase have: sufficient autonomy, adequate home support, mild disability, one or no comorbidity, no need for monitoring The availability of telemonitoring systems can allow the re-evaluation at home of even more serious patients, provided that home support is guaranteed In the post-acute phase, the patient can still be positive for the swab, therefore the choice of the setting must also take this aspect into consideration. It is not clear optimal duration and interval of follow-up to monitor patients over time Follow-up by a multidisciplinary team is recommended in patients with comorbidities, new or past or developed during follow up (16,169,71)	
22.2 The setting after the post-acute phase have should be chosen based on the characteristics of the patients. An hospital setting (rehabilitation institute for intensive rehabilitation) can be indicated in patients with	(166,170)	Agree provided that rehab program at home is existing and not "cosmetic" (<i>i.e.</i> 1 h/a week) {9} If possible, I recommend even for people discharged at home a minimum level of monitoring, even self-monitoring if it's the

1) tracheostomy, CPAP or BIPAP therapy, oxygen therapy at rest 2) extra- pulmonary comorbidities or severe disability with lack of autonomy in the activities of daily life. A home setting can be indicated in patients with sufficient autonomy, adequate home support, mild disability, one or no comorbidity, no need for monitoring		only way but not without nothing. This can be useful to empower self-efficacy and auto- rehabilitation in order to came back to the situation prior to the infection or even a better one {8}
22.3 Follow-up by a multidisciplinary team is recommended in patients with critical and severe disease, extrapulmonary manifestations of COVID-19 and in those with past disabilities, in order to evaluate their evolution over time	To verify the effectiveness of PR program dyspnea (i.e. BARTHEL dyspnea Index), ADL assessment (i.e. BARTHEL Index), physical performance (i.e. SPPB), effort tolerance (i.e. 6- min walking test), quality of life (i.e. EuroQoL) and anxiety/depression scale (HADS scale) must be re-evaluated When tracheostomy is present the patient must be evaluated by a multidisciplinary team	PR is made by pulmonary physicians and respiratory physiotherapists. Consultants are needed when other components of disability are relevant {9} May not need the whole MDT probably MD and PT for most instances {7}

Suggestions	Author's comments	Panelists' comments {rating}
23.1 During exercise	Absence of documentation that allows us to	Only pulse oxygen saturation is
training ECG, automatic	understand in detail the changes with respect to the	mandatory in most patients {4}
blood pressure and pulse	exercise capacity of patients with cardiovascular	
oxygen saturation	complications from COVID-19. The level of	Heart rate to easy and fast
monitoring is	monitoring depends on the clinical condition,	interpretation also should be
recommended	hemodynamic reestablishment and the resulting	considered in more stable
	rehabilitation profile of each patient (171,172).	patients.
	During the initial physiotherapy and exercise	{8}
	sessions, patients should be constantly monitored to	
	avoid major complications such as death, cardiac	I am not sure of this
	arrest, myocardial infarction or serious injuries,	recommendation- we do not
	which are, however, very unusual (173,174).	routinely monitor ECG or BP for
)During therapy, this monitoring can be reduced	PR however; this population may
	depending on hemodynamic stability and clinical and	indeed be different- might qualify
	cardiovascular risk profile (171). It is also important	this a bit {5}
	to investigate the symptoms reported by the	
	patients during the exercise, for example by using	
	BORG for dyspnea and Rate of Perceived Exertion	
	scale. RPE administration is also useful for	
	monitoring the exercise intensity (173)	
23.2 Supplementary	The following parameters may be useful as	
monitoring for symptom	outcomes parameters: 6 Minute Walking Test (to	
check (BORG for	assess exercise capacity), Short Physical	
dyspnea and Rate of	Performance Battery (SPPB) (to assess balance, gait	
Perceived Exertion scale	speed, and lower limb lifting, force), Hand Grip	
RPE) are useful	Strength Test (HGST) (to assess grip strength),	

Table 23. What are the risks and benefits of exercise training in COVID-19 patients with cardiovascular complications?

		۱ ۱
	Assessment of Activity of Daily Living (ADL), and	
	Instrumental ADL (IADL) (using performance-based	
	measures such as the Katz Index of Independence,	
	in ADLs or Barthel ADL Index), catalase (to assess	
	systemic antioxidant response),	
	Oxidant/antioxidant, balance (to assess the	
	inflammatory state generated by virus), Finger	
	Plethysmography (to assess endothelial function	
	with peripheral arterial tonometry)	
23.3 Effort tolerance,	Before starting the physiotherapy treatment of	Good hypothesis but we need
strength measurements,	patients with cardiovascular diseases, it is necessary	data {9}
activity of Daily Living,	to carry out a functional assessment, especially to	
inflammatory indices are	define exercise capacity (6MWT), physical function	
useful outcomes	(SPPB), strength (HGST), and identify existing	
parameters	impairments in basic activities of daily living (ADL)	
	and instrumental activities of daily living (IADL)	
	(175,176). Of great importance is also, to	
	investigate the coagulative profile of patients (177),	
	as this may lead to greater attention by the	
	physiotherapist in the patient's mobilization, or in	
	the possibility of using rehabilitation aids. Since the	
	virus appears to have effects on endothelial function	
	(178,179) and systemic inflammatory state	
	(180,181), evaluation of catalase levels,	
	oxidant/antioxidant balance, and endothelium	
	dependent vasodilation may be helpful. Exercise	
	training is the tool that allows us to recover physical	
	and endothelial function. In a first phase, we	
l		

	propose to COVID-19 patients with cardiovascular complications, exercises at intensity of 2-3 METs, in interval training, since cardiovascular changes, recovery of exercise capacity, and modification of endothelial function are also relevant after interval training compared to endurance training. According to some authors, these adaptations may be even greater in interval mode (182-184). In addition, it is possible to recommend endurance exercise training with the use of a bedside cyclo-ergometer for both upper and lower limbs (185), and physiotherapist assisted walking progressively increasing the duration and speed of the walk, always in order to achieve improvements in endothelial function (186- 188)	
23.4 If home programs are proposed a hybrid administration where the evaluation is carried out in person, and supervision of the exercise training program remotely may be the optimal solution	When home rehabilitation is proposed the requested patients, monitoring is related to: ECG monitoring also in remote, remote blood pressure and pulse monitoring, remote Oxygen saturation monitoring, symptom check (BORG for dyspnea and Rate of Perceived Exertion scale). Presence of the physiotherapist at the patient's home, remote based intervention (platforms, telephone, specific devices) and or hybrid intervention (remote + in presence of the physiotherapist) may be a possible solution to rehab access. The level of monitoring depends on the clinical condition, hemodynamic reestablishment and the resulting rehabilitation profile of each	Another good hypothesis to be tested in a study {9}

-	
patient (171,172). The control of vital parameters	
can be done in person by the physiotherapist who	
goes to the patient's home, and who may therefore	
decide to vary the level of monitoring according to	
the patient's condition; if, on the other hand, the	
parameters are remotely controlled, a complete	
monitoring is certainly safer for the patient	
(189,190). Exercise training, in the same way, can	
be administered in person by physiotherapists at the	
patient's home, or alternatively supervised remotely	
by using platforms, telephone or specific devices	
(191). The optimal solution, however, is a hybrid	
administration where the evaluation is carried out in	
person, and supervision of the exercise training	
program remotely.	
The proposed outcomes for home rehabilitation	
programs are: 1) Feasibility and acceptance, based	
on the patient's satisfaction 2) Efficacy of the	
intervention (functional recovery and improvement	
of exercise capacity estimated with distance at 6	
MWT, autonomy in ADL and IADL) 3) Safety, based	
on intervention-related adverse events and mortality	
4) improvement in Health-Related Quality of Life	
(SF-36)	
Patient satisfaction, which can usually be assessed	
as adherence and persistence to the cardiological	
rehabilitation program, appears very high in-home	
setting in relation to the higher flexibility in terms of	
	1

patients to leave a more strictly
92,193). The use of appropriate
ensures that exercise at home is
en for high-risk patients (192),
of increasing the level of patient
g the non-damaging nature of
consequent increase in
y of Daily Living (ADL), which
sing scale like Barthel Index or
ncreased autonomy in ADL,
onal recovery, are generally
improvement in the quality of
ssessed through scales such as
w on functional recovery, if the
scharged from the hospital, he
6MWT, which provide essential
to understand exercise capacity
ysiotherapy treatment to each
the other hand, the patient is in
tting, and it is in no way possible
Γ, we can think of using
a parameter for the evaluation

References

- Ferioli M, Cisternino C, Leo V et al. Protecting healthcare workers from SARS-CoV-2 infection: practical indications. Eur Respir Rev. 2020;29:200068. doi: 10.1183/16000617.0068-2020
- 2. Ippolito M, Vitale F, Accurso G, et al. Medical masks and Respirators for the Protection of Healthcare Workers from SARS-CoV-2 and other viruses. Pulmonology 2020. doi: 10.1016/j.pulmoe.2020.04.009.
- 3. European Centre for Disease Prevention and Control. Personal protective equipment (PPE) needs in healthcare settings for the care of patients with suspected or confirmed 2019-nCoV. ECDC: Stockholm; 2020.
- 4. WHO. Rational use of personal protective equipment for coronavirus disease (COVID-19): interim guidance, 27 February 2020 Available from: https://apps.who.int/iris/handle/10665/331215.
- Rapporto ISS COVID-19 n. 1/2020 Indicazioni ad interim per l'effettuazione dell'isolamento e della assistenza sanitaria domiciliare nell'attuale contesto COVID-19 Gruppo di Lavoro ISS Prevenzione e Controllo delle Infezioni. Aggiornato al 7 marzo 2020. https://www.iss.it/rapporti-covid-19/
- 6. Lazzeri M, Lanza A, Bellini R, et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch Chest Dis. 2020;90:1285. doi: 10.4081/monaldi.2020.1285
- 7. Rapporto ISS COVID-19 n. 19/2020 Raccomandazioni ad interim sui disinfettanti nell'attuale emergenza COVID-19: presidi medico-chirurgici e biocidi. Versione del 25 aprile 2020. https://www.iss.it/rapporti-covid-19/
- Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80:639-45. doi: 10.1016/j.jinf.2020.03.019
- 9. Wu Z, McGoogan JM. Characteristics of and important lessons from the Coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention JAMA 2020. doi: 10.1001/jama.2020.2648
- 10. Vitacca M, Carone M, Clini EM, et al. Joint Statement on the Role of Respiratory Rehabilitation in the COVID-19 Crisis: The Italian Position Paper Respiration 2020. doi: 10.1159/000508399
- 11. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708-20. doi: 10.1056/NEJMoa2002032
- 12. Chinese Association of Rehabilitation Medicine, Respiratory Rehabilitation Rehabilitation Chinese Association of Medicine, Committee of Cardiopulmonary Rehabilitation Group of Chinese Society of Physical Rehabilitation. [Recommendations Respiratory Medicine and for Rehabilitation of Coronavirus Disease 2019 in Adult]. [Article in Chinese]. He Hu Xi Za Zhi 2020;43:308-14. doi: Zhonghua Jie He 10.3760/cma.j.cn112147-20200228-00206.
- 13. Hamilton M, Tomlinson G, Chu L, et al. Determinants of depressive symptoms at 1 year following ICU Discharge in survivors of ≥7 days of mechanical ventilation: Results from the RECOVER Program, a secondary

analysis of a prospective multicenter cohort study. Chest 2019;156:466-46. doi: 10.1016/j.chest.2019.04.104

- 14. The first affiliated Hospital, Zhejiang University School of Medicine. Compiled According to Clinical Experience. Rehabilitation therapy for COVID-19 patients. In: Handbook of COVID-19, prevention and treatment 2020: p 47-48. [cited 2020 Mar 27]. Available from: http://www.zju.edu.cn/english/2020/0323/c19573a1987520/page.htm.
- 15. Thomas P, Baldwin C, Bissett B, et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J Physiother. 2020;66(2):73-82. doi: 10.1016/j.jphys.2020.03.011
- 16. Spruit MA, Holland AE, Singh SJ, Troosters T [Internet]. Report of an ad-hoc international task force to develop an expert-based opinion on early and short-term rehabilitative interventions (after the acute hospital setting) in COVID-19 survivors (version April 3, 2020) [cited 2020 Apr 7]. Available from: www.ersnet.org
- 17. Yang F, Liu N, Hu JY, et al. Pulmonary rehabilitation guidelines in the principle of 4S for patients infected with 2019 novel Coronavirus (2019-nCoV). Zhonghua Jie He He Hu Xi Za Zhi 2020;43:180-2. doi: 10.3760/cma.j.issn.1001-0939.2020.03.007
- Andrews AW, Thomas MW, Bohannon RW. Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Phys Ther 1996;76:248-59. doi: 10.1093/ptj/76.3.248
- 19. Bergland A, Strand BH. Norwegian reference values for the Short Physical Performance Battery (SPPB): the Tromsø Study. BMC Geriatr 2019;19:216. doi: 10.1186/s12877-019-1234-8
- 20. Borg E, Borg G, Larsson K, Letzter M, Sundblad BM. An index for breathlessness and leg fatigue. Scand J Med Sci Sports 2010;20:644-50. doi: 10.1111/j.1600-0838.2009.00985.x
- 21. Briand J, Behal H, Chenivesse C, et al. The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease. Ther Adv Respir Dis 2018;12. doi: 10.1177/1753466618793028
- 22. Ushkow BS, Bartfield JM, Reicho PR, Raccio-Robak N. Single-breath counting for the assessment of bronchospastic patients in the ED. Am J Emerg Med 1998;16:100-1. doi: 10.1016/s0735-6757(98)90081-x
- 23. Vitacca M, Paneroni M, Baiardi P, et al. Development of a Barthel Index based on dyspnea for patients with respiratory diseases. Int J Chron Obstruct Pulmon Dis 2016;11:1199-206. doi: 10.2147/COPD.S104376
- 24. Ceriana P, Carlucci A, Navalesi P, et al. Weaning from tracheotomy in longterm mechanically ventilated patients: feasibility of a decisional flowchart and clinical outcome. Intensive Care Med 2003;29:845-8. doi: 10.1007/s00134-003-1689-z
- 25. Navalesi P, Frigerio P, Patzlaff A, et al. Prolonged weaning: from the intensive care unit to home. Rev Port Pneumol 2014;20:264-72. doi: 10.1016/j.rppneu.2014.04.006
- 26. Duan J, Guo S, Han X, et al. Dual-mode weaning strategy for difficultweaning tracheotomy patients: a feasibility study. Anesth Analg 2012;115:597-604. doi: 10.1213/ANE.0b013e31825c7dba

- 27. Bach JR, Saporito LR. Criteria for extubation and tracheostomy tube removal for patients with ventilatory failure. A different approach to weaning. Chest 1996;110:1566-71. doi: 10.1378/chest.110.6.1566
- 28. Enrichi C, Battel I, Zanetti C, et al. Clinical Criteria for Tracheostomy Decannulation in Subjects with Acquired Brain Injury. Respir Care. 2017;62:1255-63. doi: 10.4187/respcare.05470
- Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Management of frailty: opportunities, challenges, and future directions. Lancet. 2019;394(10206):1376-1386. doi: 10.1016/S0140-6736(19)31785-4
- 30. Abbatecola AM, Antonelli-Incalzi R. Editorial: COVID-19 Spiraling of Frailty in Older Italian Patients. J Nutr Health Aging. 2020;24(5):453-455. doi: 10.1007/s12603-020-1357-9
- 31. Polidori MC, Maggi S, Mattace-Raso F, Pilotto A. The unavoidable costs of frailty: a geriatric perspective in the time of COVID-19. GC. 2020;6(1).
- 32. Boreskie KF, Boreskie PE, Melady D. Age is just a number and so is frailty: Strategies to inform resource allocation during the COVID-19 pandemi. CJEM 2020. doi: 10.1017/cem.2020.358
- 33. Guan C, Niu H. Frailty assessment in older adults with chronic obstructive respiratory diseases. Clin Interv Aging 2018;13:1513-24. doi: 10.2147/CIA.S173239
- 34. Larsson P, Borge CR, Nygren-Bonnier M, et al. An evaluation of the short physical performance battery following pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. BMC Res Notes 2018;11:348. doi: 10.1186/s13104-018-3458-7
- 35. Kennedy CC. Handgrip Strength in Chronic Obstructive Pulmonary Disease: Ready for Prime Time or Frailty Research Tool? Ann Am Thorac Soc 2017;14:1630-1. doi: 10.1513/AnnalsATS.201706-487ED
- 36. Richardson MT, Leon AS, Jacobs DR Jr, et al. Comprehensive evaluation of the Minnesota Leisure Time Physical Activity Questionnaire. J Clin Epidemiol 1994;47:271-81. doi: 10.1016/0895-4356(94)90008-6
- 37. Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res (Hoboken) 2011;63:S454-66. doi: 10.1002/acr.20556
- 38. Chong E, Chan M, Tan HN, Lim WS. COVID-19: Use of the Clinical Frailty Scale for Critical Care Decisions. J Am Geriatr Soc 2020. doi: 10.1111/jgs.16528
- 39. Green M, Marzano V, Leditschke IA, Mitchell I, Bissett B. Mobilization of intensive care patients: a multidisciplinary practical guide for clinicians. J Multidiscip Healthc 2016;9:247-56. doi: 10.2147/JMDH.S99811
- 40. British Society of Rehabilitation Medicine (BSRM). Rehabilitation in the wake of covid-19 - A phoenix from the ashes (Issue 2). Prepared on behalf of the BSRM by: Dr Margaret Phillips, Prof Lynne Turner-Stokes, Prof Derick Wade,

Dr Krystyna Walton. British Society of Rehabilitation Medicine. https://www.bsrm.org.uk/publications/publications

- 41. Marra A, Pandharipande PP, Girard TD, et al. Co-Occurrence of Post-Intensive Care Syndrome Problems Among 406 Survivors of Critical Illness. Crit Care Med 2018;46:1393-401. doi: 10.1097/CCM.0000000003218
- 42. Li J. Rehabilitation management of patients with COVID-19. Lessons learned from the first experiences in China. Eur J Phys Rehabil Med 2020. doi: 10.23736/S1973-9087.20.06292-9
- 43. Simpson R, Robinson L. Rehabilitation After Critical Illness in People With COVID-19 Infection. Am J Phys Med Rehabil 2020;99:470-4. doi: 10.1097/PHM.00000000001443
- 44. Pattanakuhar S, Suksathien R and Thirapatarapong W. Recommendations for Preparedness of Medical Rehabilitation Services in Thailand during COVID-19 Outbreak. ASEAN J Rehabil Med 2020;30:2-7.
- 45. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation Am J Respir Crit Care Med 2013;188:e13-e64. doi: 10.1164/rccm.201309-1634ST [Correction in Am J Respir Crit Care Med 2014;189:1570].
- 46. Carda S, Invernizzi M, Bavikatte G, et al. The role of physical and rehabilitation medicine in the COVID-19 pandemic: the clinician's view. Ann Phys Rehabil Med 2020. doi: 10.1016/j.rehab.2020.04.001
- 47. Hollander JE, Carr BG. Virtually Perfect? Telemedicine for Covid-19. N Engl J Med 2020;382:1679-81. doi: 10.1056/NEJMp2003539
- 48. Jansen-Kosterink S, Dekker-van Weering M, van Velsen L. Patient acceptance of a telemedicine service for rehabilitation care: A focus group study. Int J Med Inform 2019;125:22-29.
- 49. Sheehy LM. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMIR Public Health Surveill 2020;6:e19462. doi: 10.2196/19462
- 50. Colaneri M, Sacchi P, Zuccaro V, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Euro Surveill 2020;25:2000460.
- 51. Task Force of Pulmonary Function Testing and Clinical Respiratory Physiology, Chinese Association of Chest Physicians, Pulmonary Function Testing Group, Respiratory Therapeutics Group, Chinese Thoracic Society. [Expert consensus on pulmonary function testing during the epidemic of coronavirus disease 2019].[Article in Chinese]. [Article in Chinese]. 2020;43:302-7. Zhonghua Jie He He Hu Xi Za Zhi doi: 10.3760/cma.j.cn112147-20200225-00175
- 52. Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med 2016;42:725-38. doi: 10.1007/s00134-016-4321-8
- 53. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-3.

- 54. Dal Corso S, Duarte SR, Neder JA, et al. A step test to assess exerciserelated oxygen desaturation in interstitial lung disease. Eur Respir J. 2007;29:330-36. doi: 10.1183/09031936.0009400
- 55. Bohannon RW, Crouch R. 1-Minute Sit-to-Stand Test: systematic review of procedures, performance, and clinimetric properties. J Cardiopulm Rehabil Prev 2019;39:2-8.
- 56. De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA 2002;288:2859-67.
- 57. Ali NA, O'Brien JM Jr, Hoffmann SP, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med 2008;178:261-268. doi:
- 58. Nicastri E, Petrosillo N, Bartoli TA, et al. National Institute for the Infectious Diseases "L. Spallanzani", IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep 2020;12:8543. doi: 10.4081/idr.2020.8543
- 59. Xiong Y, Sun D, Liu Y, et al. Clinical and high-resolution CT features of the COVID-19 infection: Comparison of the initial and follow-up changes. Invest Radiol 2020;55:332-9. doi: 10.1097/RLI.00000000000674
- 60. Kim H. Outbreak of novel coronavirus (COVID-19): What is the role of radiologists? Eur Radiol 2020;30:3266-7. doi: 10.1007/s00330-020-06748-2
- 61. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020. [Online ahead of print].
- 62. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020. doi: 10.1002/jmv.25728
- 63. Hui DS, Wong KT, Ko FW, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005;128:2247-61.
- 64. Mo X, Jian W, Su Z, et al. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur Respir J 2020. doi: 10.1183/13993003.01217-2020
- 65. Patel MS, Mohan D, Andersson YM, et al. Phenotypic characteristics associated with reduced short physical performance battery score in COPD. Chest 2014;145:1016-24.
- 66. Silveira LTYD, Silva JMD, Soler JMP, et al. Assessing functional status after intensive care unit stay: the Barthel Index and the Katz Index. Int J Qual Health Care 2018;30:265-70.
- 67. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J 2014;44:1428-46.
- 68. Bohannon RW, Crouch R. 1-minute Sit-to-Stand Test: systematic review of procedures, performance, and clinimetric properties. J Cardiopulm Rehabil Prev 2019;39:2-8.

- 69. Andrews AW, Thomas MW, Bohannon RW. Normative values for isometric muscle force measurements obtained with hand-held dynamometers. Phys Ther 1996;76:248-59.
- 70. Park SH. Tools for assessing fall risk in the elderly: a systematic review and meta-analysis. Aging Clin Exp Res 2018;30:1-16.
- 71. Luyt CE, Combes A, Becquemin MH, et al. Long-term outcomes of pandemic 2009 influenza A(H1N1)-associated severe ARDS. Chest 2012;142:583-92.
- 72. Gandotra S, Lovato J, Case D, et al. Physical function trajectories in survivors of acute respiratory failure. Ann Am Thorac Soc. 2019;16(4):471-477. doi: 10.1513/AnnalsATS.201806-3750C
- 73. Magalhães PAF, Camillo CA, Langer D, Andrade LB, Duarte MDCMB, Gosselink R. Weaning failure and respiratory muscle function: What has been done and what can be improved? Respir Med 2018;134:54-61.
- 74. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med 2017;43:1441-52.
- 75. Moxham J. Respiratory muscle testing. Monaldi Arch Chest Dis 1996;51:483-8.
- 76. Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J 2019;53:1801214.
- 77. Kass LE, Putnam K. Single breath counting for the evaluation of pediatric respiratory function: derivation of a "normogram". Intern Emerg Med 2016;11:225-8.
- 78. Severin R, Arena R, Lavie CJ, et al. Respiratory muscle performance screening for infectious disease management following COVID-19: A highly pressurized situation. Am J Med 2020. doi: 10.1016/j.amjmed.2020.04.003
- 79. Fernandez R, Raurich JM, Mut T, et al. Extubation failure: diagnostic value of occlusion pressure (P0.1) and P0.1-derived parameters. Intensive Care Med 2004;30:234-40. d
- 80. Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care 2016;20:77.
- 81. Vitacca M, Paneroni M, Bianchi L, et al. Maximal inspiratory and expiratory pressure measurement in tracheotomised patients. Eur Respir J. 2006;27:343-9.
- 82. Henry BM, de Oliveira MHS, Benoit S, et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 2020. doi: 10.1515/cclm-2020-0369
- 83. Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J 2020;55:2000607. doi: 10.1183/13993003.00607-2020
- 84. Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 2013;48:742-8.
- 85. Dickey BF, Whitsett JA. Understanding interstitial lung disease: It's in the mucus. Am J Respir Cell Mol Biol 2017;57:12-4.
- 86. Volpe MS, Adams AB, Amato MB, Marini JJ. Ventilation patterns influence airway secretion movement. Respir Care 2008;53:1287-94.

- 87. Ntoumenopoulos G, Shannon H, Main E. Do commonly used ventilator settings for mechanically ventilated adults have the potential to embed secretions or promote clearance? Respir Care 2011;56:1887-92.
- 88. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Available from: https://www.who.int/docs/defaultsource/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
- 89. WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. Available from: https://www.who.int/publications-detail/clinicalmanagement-of-severe-acute-respiratory-infection-when-novelcoronavirus-(ncov)-infection-is-suspected
- 90. Shen Y, Huang S, Kang J, et al. Management of airway mucus hypersecretion in chronic airway inflammatory disease: Chinese expert consensus (English edition). Int J Chron Obstruct Pulmon Dis 2018;13:399-407.
- 91. Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 2005;24:502-9.
- 92. Li T, Zhang Y, Gong C, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr 2020. doi: 10.1038/s41430-020-0642-3
- 93. Mehta S. Nutritional status and COVID-19: an opportunity for lasting change? Clin Med (Lond) 20207. doi: 10.7861/clinmed.2020-0187
- 94. Società Italiana di Nutrizione Artificiale e Metabolismo. [Raccomandazioni pratiche per il trattamento nutrizionale dei pazienti affetti da Covid-19].[in Italian]. Available from: http://www.sinpe.org/news/raccomandazioni-pratiche-per-il-trattamento-nutrizionale-dei-pazienti-affetti-da-covid-19/
- 95. Romano L, Bilotta F, Dauri M, et al. Short Report Medical nutrition therapy for critically ill patients with COVID-19. Eur Rev Med Pharmacol Sci 2020;24:4035-9. doi: 10.26355/eurrev_202004_20874
- 96. Yu KY, Shi HP. [Explanation of Expert Recommendations on Medical Nutrition for Patients With Novel Coronavirus Pneumonia].[Article in Chinese]. Zhonghua Yi Xue Za Zhi 2020;100:724-8. doi: 10.3760/cma.j.cn112137-20200205-00196
- 97. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2019;38:48-79.
- 98. Brodsky MB, Huang M, Shanholtz C, et al. Recovery from dysphagia symptoms after oral endotracheal intubation in acute respiratory distress syndrome survivors. A 5-year longitudinal study. Ann Am Thorac Soc. 2017;14:376-83.
- 99. Federazione Logopedisti Italiani. [Linee di indirizzo e raccomandazioni per l'attività del logopedista ai tempi del Covid19. Documento Condiviso FLI– Cda dei logopedisti].[in Italian]. 2020. Available from: https://fli.it/wpcontent/uploads/2020/05/Linee-di-di-indirizzo-FLI-CdA-Logopedisti-agg-8maggio-rev2.pdf
- 100. Boueri FM, Bucher-Bartelson BL, Glenn KA, Make BJ. Quality of life measured with a generic instrument (Short Form-36) improves following pulmonary rehabilitation in patients with COPD. Chest 2001;119:77-84

- 101. Caserta MS, Lund DA, Wright SD. Exploring the Caregiver Burden Inventory (CBI): further evidence for a multidimensional view of burden. Int J Aging Hum Dev 1996;43:21-34
- 102. Derogates LR, Fitzpatrick MA. The SCL-90-R, the Brief Symptom Inventory (BSI), and the BSI-18. In M.E. Maruish, editor. The use of psychological testing for treatment planning and outcomes assessment. Mahwah: Lawrence Erlbaum; 2004.
- Derogatis LR. Unger R. Symptom checklist-90-revised. In: I.B. Weiner and W.E. Craighead, editors. The Corsini encyclopedia of psychology. Chichester: J. Wiley & Sons; 2010.
- 104. Grasselli G, Scaravilli V, Tubiolo D, et al. Quality of life and lung function in survivors of extracorporeal membrane oxygenation for acute respiratory distress syndrome. Anesthesiology 2019;130:572-80
- 105. Weiss DS. The impact of event scale: Revised. In J.P. Wilson and C.S.-k. Tang, editors. International and cultural psychology. Cross-cultural assessment of psychological trauma and PTSD. Springer Science; 2007. p. 219–38.
- 106. Ware Jr JE, Kosinski M, Bjorner JB, et al. User's Manual for the 36v2® Health Survey. 2nd ed. Lincoln: Quality Metric Incorporated; 2007.
- 107. Mahoney FI, Barthel DW. Functional evaluation: the Barthel Index. Md State Med J 1965;14:61-5.
- 108. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:179-86
- 109. Hosey MM, Leoutsakos JS, Li X, et al. Screening for posttraumatic stress disorder in ARDS survivors: validation of the Impact of Event Scale-6 (IES-6). Crit Care 2019;23:276.
- 110. Hopkins RO, Weaver LK, Collingridge D, et al Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Resp Crit Care Med 2005;171:340-7.
- 111. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020. doi: 10.1016/j.bbi.2020.04.027
- 112. Kwek SK, Chew WM, Ong KC, et al. Quality of life and psychological status in survivors of severe acute respiratory syndrome at 3 months postdischarge. J Psychosom Res 2006;60:513-9.
- 113. Pfefferbaum B, North CS. Mental health and the Covid-19 pandemic. N Engl J Med 2020. doi: 10.1056/NEJMp2008017.
- 114. Chan JC Recovery pathway of post-SARS patients. Thorax 2005;60:361-2.
- 115. Mak WW, Law RW, Woo J, et al. Social support and psychological adjustment to SARS: the mediating role of self-care self-efficacy. Psychol Health 2009;24:161-74.
- 116. Murray H, Grey N, Wild J, et al. Cognitive therapy for post-traumatic stress disorder following critical illness and intensive care unit admission. Cogn Behav Ther 2020;13:e13.
- 117. Hau YS, Kim JK, Hur J, Chang MC. How about actively using telemedicine during the COVID-19 pandemic? J Med Syst 2020;44:108.

- Zhou X, Snoswell CL, Harding LE, et al. The role of telehealth in reducing the mental health burden from COVID-19. Telemed J E Health 2020;26:377-9.
- 119. Liu S, Yang L, Zhang C, et al. Online mental health services in China during the COVID-19 outbreak. Lancet Psychiatry 2020;7:e17-8. doi: 10.1016/S2215-0366(20)30077-8.
- 120. Hopkins RO, Weaver LK, Collingridge D, et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Resp Crit Care Med 2005;171:340-7.
- 121. Yeung DY, Fung HH. Age differences in coping and emotional responses toward SARS: a longitudinal study of Hong Kong Chinese. Aging Ment Health 2007;11:579-87
- 122. Liu X, Kakade M, Fuller CJ, et al. Depression after exposure to stressful events: lessons learned from the severe acute respiratory syndrome epidemic. Compreh Psychiatry 2012;53:15-23.
- 123. Sim K, Huak Chan Y, Chong PN, et al. Psychosocial and coping responses within the community health care setting towards a national outbreak of an infectious disease. J Psychosom Res 2010;68:195-202
- 124. Briand J, Behal H, Chenivesse C, et al. The 1-minute sit-to-stand test to detect exercise-induced oxygen desaturation in patients with interstitial lung disease. Ther Adv Resp Dis 2018;12:753466618793028.
- Li LQ, Huang T, Wang YQ, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol 2020;92:577-83. doi: 10.1002/jmv.25757
- 126. Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev 2014;CD006322.
- 127. Spruit MA, Pitta F, McAuley E, et al. Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am J Resp Crit Care Med 2015;192:924-33.
- 128. Holland AE. Exercise limitation in interstitial lung disease mechanisms, significance and therapeutic options. Chron Respir Dis 2010;7:101-11.
- 129. Gosselink R, Bott J, Johnson M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med 2008;34:1188-99.
- 130. Chen YH, Lin HL, Hsiao HF, et al. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation. Respir Care 2012;57:727-34.
- 131. Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 2007;39:1423-34.
- 132. Simonds AK, Hanak A, Chatwin M, et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess 2010;14:131-72.

- 133. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med 2013;43:313-38.
- 134. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med 2013;43:927-54.
- 135. Hui DS, Joynt GM, Wong KT, et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 2005;60:401-9.
- 136.Qu J-M, Wang C, Cao B, Chinese Thoracic Society Chinese Association of Chest Physician. Guidance for the management of adult patients with coronavirus disease 2019. Chin Med J (Engl) 2020. doi: 10.1097/CM9.00000000000899.
- 137. Bloem AEM, Mostard RLM, Stoot N, et al. Severe fatigue is highly prevalent in patients with IPF or sarcoidosis. J Clin Med 2020;9:1178. doi: 10.3390/jcm9041178
- 138. Hanada M, Kasawara KT, Mathur S, et al. Aerobic and breathing exercises improve dyspnea, exercise capacity and quality of life in idiopathic pulmonary fibrosis patients: systematic review and meta-analysis. J Thorac Dis 2020;12:1041-55. doi: 10.21037/jtd.2019.12.27
- 139. McIlwaine M, Bradley J, Elborn JS, Moran F. Personalising airway clearance in chronic lung disease. Eur Respir Rev 2017;26:160086.
- 140. Santos TV, Ruas G, Sande de Souza LA, Volpe MS. Influence of forward leaning and incentive spirometry on inspired volumes and inspiratory electromyographic activity during breathing exercises in healthy subjects. J Electromyogr Kinesiol 2012;22:961-7.
- 141. Fagevik Olsén M, Lannefors L, Westerdahl E. Positive expiratory pressure
 Common clinical applications and physiological effects. Respir Med 2015;109:297-307.
- 142. Clini E. Positive expiratory pressure techniques in respiratory patients: old evidence and new insights. Breathe 2009;6:153–9.
- 143. Nicolini A, Mascardi V, Grecchi B, et al. Comparison of effectiveness of temporary positive expiratory pressure versus oscillatory positive expiratory pressure in severe COPD patients. Clin Respir J 2018;12:1274-82.
- 144. Venturelli E, Crisafulli E, DeBiase A, et al. Efficacy of temporary positive expiratory pressure (TPEP) in patients with lung diseases and chronic mucus hypersecretion. The UNIKO® project: a multicentre randomized controlled trial. Clin Rehab2013;27:336-46.
- 145. Postiaux G. [Chest physical therapy of the distal lung. Mechanical basis of a new paradigm].[Article in French]. Rev Mal Respir 2014;31:552-67.
- 146. Respiratory care committee of Chinese Thoracic Society. [Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia].[Article in Chinese]. Zhonghua jie he he hu xi za zhi 2020;43:288-96. doi: 10.3760/cma.j.issn.1001-0939.2020.0020
- 147. Tang JW, Li Y, Eames I, Chan PK, Ridgway GL. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. J Hosp Infect 2006;64:100-14.

- 148. Cates CJ, Welsh EJ, Rowe BH. Holding chambers (spacers) versus nebulisers for beta-agonist treatment of acute asthma. Cochrane Database Syst Rev 2013;CD000052.
- 149. Center for Disease Control and Prevention. Interim U.S. Guidance for risk assessment and public health management of healthcare personnel with potential exposure in a healthcare setting to patients with Coronavirus disease (COVID-19). Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-riskassesment-hcp.html
- 150. County of San Diego. Metered dose inhaler option approved during the COVID-19 outbreak. Available from: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/EM S/Medical_Director_Report/CoSD%20EMS%20COVID%2019%20MDI%200 ption%20Approval%20Memo.pdf
- 151. Ari A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respir Med 2020;167:105987.
- 152. Skevington-Postles L, Akers S, George P, et al. The emerging role of airway clearance techniques in the treatment of interstitial lung disease Thorax 2016;71:A174.
- 153. Kendrick AH. Airway clearance techniques in cystic fibrosis: physiology, devices and the future. J R Soc Med 2007;100:3-23.
- 154. Hill CJ, Lazzeri M, D'Abrosca F. Breathing exercises and mucus clearance techniques in pulmonary rehabilitation. In: E. Clini, AE Holland, F Pitta, T Troosters, editors. Textbook of pulmonary rehabilitation. Cham: Springer International Publishing; 2018. pp. 205–16.
- 155. Shiba T, Ghazizadeh S, Chhetri D, et al. Tracheostomy considerations during the COVID-19 pandemic. OTO Open 2020;4:2473974X20922528.
- 156. Belli S, Cattaneo D, D'Abrosca F, et al. A pilot study on the non-invasive management of tracheobronchial secretions in tracheostomised patients. Clin Respir J 2019;13:637-42.
- 157. Vorona S, Sabatini U, Al-Maqbali S, et al. Inspiratory muscle rehabilitation in critically ill adults. A systematic review and meta-analysis. Ann Am Thor Soc 2018;15:735-44.
- 158. Elkins M, Dentice R. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: a systematic review. J Physiother 2015;61:125-34.
- 159. Beaumont M, Forget P, Couturaud F, Reychler G. Effects of inspiratory muscle training in COPD patients: A systematic review and meta-analysis. Clin Resp J 2018;12:2178-88.
- 160. Holland AE, Wadell K, Spruit MA. How to adapt the pulmonary rehabilitation programme to patients with chronic respiratory disease other than COPD. Eur Resp Rev 2013;22:577-86.
- 161. Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53:1801214.
- 162. Bourne S, DeVos R, North M, et al. Online versus face-to-face pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: randomised controlled trial. BMJ Open 2017;7:e014580.

- 163. Chaplin E, Hewitt S, Apps L, et al. Interactive web-based pulmonary rehabilitation programme: a randomised controlled feasibility trial. BMJ Open 2017;7:e013682.
- 164. Cox NS, Oliveira CC, Lahham A, Holland AE. Pulmonary rehabilitation referral and participation are commonly influenced by environment, knowledge, and beliefs about consequences: a systematic review using the Theoretical Domains Framework. J Physiother 2017;63:84-93.
- 165. Keating A, Lee AL, Holland AE. Lack of perceived benefit and inadequate transport influence uptake and completion of pulmonary rehabilitation in people with chronic obstructive pulmonary disease: a qualitative study. J Physiother 2011;57:183-90.
- 166. Xie L, Liu Y, Xiao Y, et al. Follow-up study on pulmonary function and lung radiographic changes in rehabilitating severe acute respiratory syndrome patients after discharge. Chest 2005;127:2119-24.
- 167. Hsieh MJ, Lee WC, Cho HY, et al. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis. Influenza Other Respir Viruses 2018;12:643-8.
- 168. Busch C, Baumbach C, Willemsen D, et al. Supervised training with wireless monitoring of ECG, blood pressure and oxygen-saturation in cardiac patients. J Telemed Telecare 2009;15:112-4.
- 169. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020;55:2000547.
- 170. Wang X, Xu H, Jiang H, et al. Follow-up study of 131 COVID-19 discharged patients: Is the current Chinese discharge criteria reliable? Accessed on: 3 June 2020. Available from: SSRN: https://ssrn.com/abstract=3551342 or http://dx.doi.org/10.2139/s srn.3551342
- 171. Ambrosetti M, Abreu A, Corrà U, et al. Secondary prevention through cardiovascular rehabilitation: comprehensive From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2020. doi: 10.1177/2047487320913379
- 172. Mampuya WM. Cardiac rehabilitation past, present and future: an overview. Cardiovasc Diagn Ther 2012;2:38-49.
- 173. Kim C, Moon CJ, Lim MH. safety of monitoring exercise for early hospitalbased cardiac rehabilitation. Ann Rehab Med 2012;36:262--7
- 174. Alegria-Ezquerra E. Cardiac rehabilitation: evidence for action. E-J Cardiol Pract 2012;11:6.
- 175. Celis-Morales CA, Welsh P, Lyall DM, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: prospective cohort study of half a million UK Biobank participants. BMJ 2018;361:k1651.
- 176. O'Neill D, Forman DE. The importance of physical function as a clinical outcome: Assessment and enhancement. Clin Cardiol 2020;43:108-17.

- 177. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094-9.
- 178. Zhang C, Zhao YX, Zhang YH, et al. Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. P Natl Acad Sci USA 2010;107:15886-91.
- 179. Dong B, Zhang C, Feng JB, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2008;28:1270-6.
- 180. South AM, Tomlinson L, Edmonston D, et al. Controversies of reninangiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 2020;16:305-7.
- 181. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol 2020;318:H1084-90.
- 182. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scann J Med Sci Sports 2014;24:e69-76.
- 183. Arias-Fernández P, Romero-Martin M, Gómez-Salgado J, Fernández-García D. Rehabilitation and early mobilization in the critical patient: systematic review. J Phys Ther Sci 2018;30:1193-201.
- 184. Jones H, Taylor CE, Lewis NC, George K, Atkinson G. Post-exercise blood pressure reduction is greater following intermittent than continuous exercise and is influenced less by diurnal variation. Chronobiol Int 2009;26:293-306.
- 185. Needham DM, Truong AD, Fan E. Technology to enhance physical rehabilitation of critically ill patients. Crit Care Med 2009;37:S436-41.
- 186. Ribeiro F, Alves AJ, Duarte JA, Oliveira J. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int J Cardiol 2010;141:214-21.
- 187. Qiu S, Cai X, Yin H, et al. Exercise training and endothelial function in patients with type 2 diabetes: a meta-analysis. Cardiovasc Diabetol 2018;17:64.
- 188. Guizoni DM, Dorighello GG, Oliveira HC, et al. Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. J Translat Med 2016;14:213.
- 189. Piotrowicz E, Piepoli MF, Jaarsma T, et al. Telerehabilitation in heart failure patients: The evidence and the pitfalls. Int J Cardiolol 2016;220:408-13.
- 190. Medina Quero J, Fernández Olmo MR, Peláez Aguilera MD, Espinilla Estévez M. Real-time monitoring in home-based cardiac rehabilitation using wristworn heart rate devices. Sensors (Basel) 2017;17:2892.
- 191. Scalvini S, Zanelli E, Comini L, et al. Home-based exercise rehabilitation with telemedicine following cardiac surgery. J Telemed Telecare 2009;15:297-301.
- 192. Frederix I, Vanhees L, Dendale P, Goetschalckx K. A review of telerehabilitation for cardiac patients. J Telemed Telecare 2015;21:45-53-
- 193. Thomas RJ, Beatty AL, Beckie TM, et al. Home-based cardiac rehabilitation: A scientific statement from the American Association of Cardiovascular and

Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. Circulation 2019;140:e69-89.