The phyllotaxis of the aortic valve

  • Marco Moscarelli | Imperial College London, United Kingdom.
  • Ruggero De Paulis Department of Cardiac Surgery, European Hospital, Rome, Italy.


Biological systems ubiquitously and inevitably exhibit stochasticity in traits from the molecular level to the multicellular and morphological level. However, there are several examples of natural events that might be described in mathematical terms. Plants grow in a structured and geometric way to maximize their sun exposure for photosynthesis while reducing the stress. The ‘Fibonacci sequence’ and its ‘golden ratio’ are considered a mathematical regularity and model that is one of the corner-stone of the ‘phyllotaxis’, the part of the botany that studies how plants branch. Nevertheless, we currently do not know if such mathematical model can be applied to humans. Different authors have hypothesized that ‘fractal’ might be identified along with the ‘golden-ratio’ in the human body (coronary artery, heart valves etc.). The aortic valve and the aortic root might represent an interesting model of human fractal geometry, where the phyllotactic rules can be reasonably applied, and where deviation from normality might results in dysfunction. However, in the absence of scientific validations, such report represents only the authors’ perceptions of a beautiful shape.


Download data is not yet available.


PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

Cardiology - Editorial
aortic valve, fibonacci, phyllotaxis, golden-ratio, golden-spiral
  • Abstract views: 424

  • PDF: 282
How to Cite
Moscarelli, M., & De Paulis, R. (2019). The phyllotaxis of the aortic valve. Monaldi Archives for Chest Disease, 89(3).