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Abstract  
Rapid diagnosis of tuberculosis (TB) is an effective measure 

to eradicate this infectious disease worldwide. Traditional meth-
ods for screening TB patients do not provide an immediate diag-

nosis and thus delay treatment. There is an urgent need for the 
early detection of TB through point-of-care tests (POCTs). Several 
POCTs are widely available at primary healthcare facilities that 
assist in TB screening. In addition to the currently used POCTs, 
advancements in technology have led to the discovery of newer 
methods that provide accurate and fast information independent of 
access to laboratory facilities. In the present article, the authors 
tried to include and describe the potential POCTs for screening TB 
in patients. Several molecular diagnostic tests, such as nucleic 
acid amplification tests, including GeneXpert and TB-loop-medi-
ated isothermal amplification, are currently being used as POCTs. 
Besides these methods, the pathogenic component of 
Mycobacterium tuberculosis can also be utilized as a biomarker 
for screening purposes through immunological assays. Similarly, 
the host immune response to infection has also been utilized as a 
marker for the diagnosis of TB. These novel biomarkers might 
include Mtb85, interferon-γ inducible protein-10, volatile organic 
compounds, acute-phase proteins, etc. Radiological tests have also 
been observed as POCTs in the TB screening POCT panel. 
Various POCTs are performed on samples other than sputum, 
which further eases the screening process. These POCTs should 
not require large-scale manpower and infrastructure. Hence, 
POCT should be able to identify patients with M. tuberculosis 
infection at the primary healthcare level only. There are several 
other advanced techniques that have been proposed as future 
POCTs and have been discussed in the present article. 

 
 

Introduction 
Point-of-care testing is referred to as a sensitive and specific 

bedside test for the diagnosis of a patient’s disease, its monitoring, 
and its management. Tremendous advances in technology have led 
to the development of point-of-care diagnostics that aid in 
improved clinical outcomes. The point-of-care test (POCT) facil-
itates early medical decisions, effective patient triage in emergen-
cies, reduced complications, and improved adherence to treatment 
[1]. POCTs for tuberculosis (TB) are particularly important in 
resource-limited settings [2]. The World Health Organization 
(WHO) has laid out criteria for an ideal POCT, which include 
affordability, sensitivity, specificity, user friendliness, equipment-
freeness, robustness, rapidity, and finally being easily accessible 
and deliverable to end users [3]. POCT for infectious diseases 
allows healthcare providers to quickly initiate appropriate treat-
ment. Among infectious diseases, even though TB has become a 
largely treatable disorder, it remains a major cause of death world-
wide. The delay in diagnosis of TB makes infected individuals a 
central carrier of Mycobacterium tuberculosis, which has the 
potential to infect other individuals [4]. Therefore, the goal of the 
"End TB" strategy can be achieved by rapid detection of active TB 
cases using diagnostic facilities that are easily provided at health 
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care centers. Conventional methods of diagnosis, such as smear 
microscopy, have low sensitivity, drug resistance cannot be deter-
mined, and traditional culture methods are time-consuming. On the 
other hand, live and dead M. tuberculosis could not be differentiat-
ed by molecular methods. Also, immunological methods are being 
utilized to demarcate active and latent TB cases, but these tests do 
fail to some extent [5]. Therefore, to overcome several limitations 
of existing diagnostic modalities, various other methods have 
already been defined as POCTs, and in recent years, advanced, 
rapid new approaches have been in the pipeline of development. 
The present review discusses numerous diagnostic techniques that 
are either current POCTs or future potential candidates. 

 
 

Methods 
A comprehensive literature search was accomplished on elec-

tronic platforms such as PUBMED and Google Scholar for publi-
cations in English. The following key words were used, either indi-
vidually or in combination: Point of care test for TB, molecular 
test, WHO-approved tests, advanced POCT, early diagnosis, 
POCT in LMICs. We excluded the publications that did not men-
tion the use of diagnostic tests as a point of care. Key data from 81 
articles were compiled and described in the present review. 

 
 

Point-of-care tests used in the present period 
Sputum smear microscopy  

Sputum smear microscopy (SSM) has been the keystone in 
diagnosing Mycobacterium (Mtb) infection and is performed in 
peripheral microscopy centers, which are associated with primary 
health care centers providing TB therapy. It is the primary method 
of diagnosis in low- and middle-income countries. It is a very spe-
cific and beneficial technique in areas with a very high prevalence 
of TB [6]. This method utilizes Ziehl-Neelsen staining or fluores-
cent staining using Auramine-O/Auramine-rhodamine to detect 
acid-fast bacilli in sputum samples [7]. Even in the era of molecu-
lar diagnostics, smear microscopy is inexpensive, rapid, and sub-
stantially specific in diagnosis in highly prevalent areas. Despite 
these advantages, it has low sensitivity and cannot distinguish 
between live and dead Mtb and tubercular and non-tubercular Mtb 
[6]. Nowadays as well, SSM remains a major and primarily used 
method in clinical labs for the diagnosis of TB in resource-limited 
settings. 

 
Nucleic acid amplification tests  

Nucleic acid amplification tests (NAATs) can rapidly detect a 
small quantity of Mtb DNA with different modifications of poly-
merase chain reaction (PCR) amplification. In recent years, 
improvements in simplicity and automation have led to NAAT 
being identified as an attractive and potential candidate for POCT 
for TB. Laboratory-based diagnosis of TB is performed using sev-
eral commercially available NAATs. Although the accuracy of the 
NAATs for respiratory samples is usually comparable, their inclu-
sion in POCT relies basically on ease of use, rapidity of sample 
preparation and test completion, infrastructure, and cost-effective-
ness [8]. One of the major disadvantages of NAATs is their inabil-
ity to distinguish between live and dead TB bacilli. The Truenat 
assay is developed by MolBio Diagnostics Pvt. Ltd. (Verna, India). 
It is based on real-time PCR chips that are analyzed on the compa-
ny’s Truelab instruments. The instruments are compact, portable, 

and can be operated with a battery pack, making them ideal for use 
as a POCT [9]. Xpert Mycobacterium tuberculosis/rifampicin 
(MTB/RIF) is a real-time quantitative PCR for Mtb that amplifies 
the rpoB gene-containing mutations responsible for rifampicin 
resistance. Thus, it can detect TB infection and RIF resistance 
simultaneously. There are several studies that have demonstrated 
Xpert to function as a POCT in well-resourced settings [10]. 
Advanced Xpert MTB/RIF Ultra has a better limit of detection of 
16 CFU/mL in comparison to 114 CFU/mL of Xpert MTB/RIF 
[11]. GeneXpert OMNI is a small, portable POCT platform with a 
single standalone that has the potential to process Xpert cartridges 
in extreme conditions [12]. Similarly, other point-of-care NAATs 
are also under development, such as Q-point-of-care from 
QuantuMDx (Newcastle upon Tyne, UK) which is proposed to 
produce results in less than 30 minutes [13]. GeneXpert is the fore-
most used method for TB detection and provides rapid results in 
the current scenario. Recently, one of the studies conducted in a 
resource-limited setting showed the feasibility and sensitivity of 
GeneXpert in saliva samples of TB patients [14]. Although it deals 
with inadequate facilities and implementation barriers in low and 
low middle income countries (LMICs), GeneXpert remains a cru-
cial point-of-care diagnostic platform for this infectious disease. 

 
Loop-mediated isothermal amplification  

TB-loop-mediated isothermal amplification (LAMP) is the 
WHO-endorsed molecular assay as an alternative to smear 
microscopy, which has a pooled sensitivity of 78% in clinical val-
idation by the WHO [15,16]. LAMP is based on nucleic acid 
amplification through isothermal conditions. It involves auto-
cycling, strand displacement DNA synthesis activity, and detection 
through visible turbidity in UV light [17]. TB-LAMP is compara-
tively easier, less labor-intensive, and has higher sensitivity and 
specificity as compared to smear microscopy. As LAMP does not 
require a thermocycler or fluorescence detection system, it has the 
potential to reduce test cost and time of diagnosis in peripheral lab 
or community settings. In comparison to other NAATs like Xpert 
MTB/RIF and point-of-care Xpert OMNI, which have better sen-
sitivity and specificity, TB-LAMP does not provide additional ben-
efits. Instead, it is being used in addition to the above NAATs, 
replacing only smear microscopy [15,18]. Therefore, in the 
absence of well-resourced infrastructure, TB-LAMP provides a 
better and more rapid platform for the diagnosis of TB at the point 
of care. Multiplex LAMP coupled with a fluorescent-based detec-
tion system has been developed to differentiate between Mtb and 
nontuberculous mycobacteria and thus show better performance 
than PCR or the traditional LAMP method. Several miniaturized 
LAMP techniques, such as microfluidic, electrochemical, paper-
based, and digital methods, have been developed for rapid sample 
processing and screening of pathogens [19]. One of the studies 
evaluated the efficiency of the WHO-approved TB-LAMP kit in a 
sputum sample of TB patients in LMIC and indicated its potential 
to be used at microscopy centers in a resource-limited setting [20]. 
Similarly, another study demonstrated the good sensitivity and 
specificity of TB-LAMP for Mtb detection in LMICs [21]. 

 
Lipoarabinomannan assay 

The diagnostic tests for TB infection mainly rely on sputum 
samples, which are difficult to obtain and have low sensitivity in 
children and immunocompromised people. The lipoarabinoman-
nan (LAM) assay is the only WHO-recommended test to rapidly 
detect active TB in urine samples [22]. The cell envelope of M. 
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tuberculosis contains a LAM component that circulates in the 
blood after replicating Mtb degrades. LAM is filtered across the 
glomerular basement membrane of the kidneys into the urine. 
AlereLAM is the first commercially available lateral flow assay 
(LFA) for TB detection [23]. It is an immunochromatographic test 
for the qualitative detection of LAM antigen in human urine using 
specific antibodies against LAM. In addition to this, in recent 
years, Fujifilm TB LAM has been developed with a similar work-
ing principle and better sensitivity, even in HIV-infected TB 
patients [24]. These LAM assays have the potential to reach pedi-
atric patients and adults regardless of HIV status and site of infec-
tion. As LAM has been observed to assist in the diagnosis of TB in 
immunocompromised individuals, there have been multiple stud-
ies that are being focused on the utilization of LAM biomarker 
assays even in paucibacillary diseases like miliary TB and lymph 
node TB [25-27]. Hence, urinary LAM has gained importance in 
the above-mentioned TB diagnostics. Therefore, urine LAM is the 
most prominent and promising diagnostic biomarker for use as a 
point-of-care TB test. The development of the lateral flow method 
has increased the utility of the LAM assay as a POCT, and as it can 
be easily done in urine samples, it proves to be advantageous over 
other tests that depend on sputum samples [22]. Due to modifica-
tions in the assay and the ease of obtaining samples, the LAM 
assay has been approved for TB diagnosis in LMICs. 

 
Biosensors 

These are analytical devices that utilize the principle of con-
verting the biochemical reaction or interaction of isolated 
enzymes, receptor proteins, antibodies, whole cells, or tissue with 
a specific chemical compound into an optical, electrical, or thermal 
signal. The biosensors are classified into electrochemical, optical, 
mechanical, and magnetic based on the principle of the transducer 
[28]. They are also classified based on application as TB biosen-
sors into electronic noses, nanowires, fiber-optics, breathalyzers, 
surface plasmon resonance, quartz crystal microbalances, magne-
toelastics, diagnostic magnetic resonance, and magnetic barcodes. 
There are many advantages associated with the use of biosensing 
technologies, including: i) rapid and sensitive detection; ii) highly 
specific; iii) rapid response time; iv) capability to provide continu-
ous data with minimal sample quantity requirements [29]. These 
biosensors are being developed using different omics approaches, 
such as genomics, proteomics, metabolomics, and lipidomics, to 
provide efficient, sensitive, and specific biosensors for TB diagno-
sis [30]. Besides several advancements, large-scale usage of 
biosensors needs to be promoted to include them in routine diag-
nostic modalities. In 2023, a research group developed a portable 
DNA electrochemical biosensor in one of the LMICs that can 
detect TB robustly, sensitively, and specifically via DNA 
hybridization with its IS6110 gene marker, thus providing a poten-
tial PCOT in LMICs [31]. Hence, biosensors have great potential 
for PCOT in view of effective TB case finding. 

 
Volatile organic compounds by breath analysis 

Multiple signature molecules in breath can be detected using 
electric nose devices or captured and concentrated in a collection 
bag, which is later analyzed by gas chromatography or mass spec-
trometry [32]. One of the commercial products, i.e., the TB breath-
alyzer, is being developed by Rapid Biosensor Systems 
(Cambridge, UK), allowing for portability and instant results with 
a simple breath test for TB. The reading and analysis of the sample 
take only a few minutes. Results from this non-invasive method 

correlate well with X-rays, sputum smears, and clinical exams and 
are unaffected by other conditions such as HIV, cancer, etc. 
Recently, Saktiawati et al. (2021) started a trial study for the appli-
cation of the electric nose in TB detection and aimed at providing 
data concerning the sensitivity and specificity of the eNose-TB, 
time, and cost analysis of the screening algorithm with the eNose 
in a resource-limited set-up [33]. 

 
 

Point-of-care tests planned to be used  
in the future 
Aptamers 

They are target-specific single-stranded DNA or RNA detection 
molecules, which have higher sensitivity and specificity for target 
antigens. Structurally, they are small biomolecules ranging from 20 
to 60 nucleotides and mimic antibodies. These are cost-effective, 
more stable at high temperatures, with better shell life and no varia-
tion among different batches (as with antibodies) [34]. Therefore, 
global efforts are being made to introduce aptamers in TB diagnos-
tics and therapeutic monitoring. A previous study successfully raised 
aptamers to TB-specific antigens, which were detected in clinical 
samples [35]. Aptamers designed against the whole bacterium are 
suitable for diagnostic purposes as they can recognize different epi-
topes present in Mtb and detect them in human fluid, i.e., blood, 
serum, and bronchoalveolar lavage. Aptamers are emerging as alter-
native molecules with superior properties to antibodies used in pre-
vious immunological assays. Aptamers against Mtb antigens such as 
culture filtrate protein-10 (CFP-10), early secretory antigenic 
(ESAT-6), and heterodimers of CFP-10-ESAT-6 have been identified 
and investigated for their capability of detecting active TB in clinical 
sputum samples [36,37]. A collaborative study developed two DNA-
aptamer-based diagnostic tests, namely an aptamer-linked immobi-
lized sorbent assay (Aptamer ALISA) and an electrochemical sensor 
in LMICs, for the direct detection of the TB biomarker HspX in spu-
tum [35]. The application of aptamers as recognition elements in the 
LFAs can potentially lead to the development of point-of-care diag-
nostic devices. 

 
Genome sequencing  

It is a versatile tool for rapid and accurate detection of Mtb, 
which aids in better TB infection management through the success-
ful determination of clinically significant mutations. There are vari-
ous next-generation sequencing (NGS) methods, including whole 
genome sequencing [38], targeted NGS [39], and shotgun NGS [40], 
which are frequently used in the diagnosis of Mtb drug resistance. 
NGS is the most comprehensive molecular-based approach for TB 
detection. Sequencing of the whole cell genome provides more com-
prehensive genomic data. It allows for the identification of muta-
tions, which further confers drug resistance to infecting Mtb organ-
isms. On the other hand, targeted NGS provides faster and less infor-
mation because it focuses on specific genomic areas for deeper 
analysis. Shotgun NGS determines the sequence of every chromo-
some and entire genome through random DNA fragments with over-
lapping ends [41]. The feasibility of these techniques can be attained 
in high-income and low-TB-burden countries. Therefore, these tech-
nologies are in their initial phases only in the diagnosis of TB and 
drug-resistant TB in current clinical settings. Besides advancements 
in technologies, the high cost of sequencing methods makes their 
utility in diagnosis a difficult task and makes them unsuitable for 
POCT in low- and middle-income countries. 
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Biomarker-pathogen and host 
The target for the global control of TB disease demands the 

development of simpler and more accurate diagnostic tests. It 
requires specific TB diagnostic tests that are low-cost, minimally 
invasive, non-sputum-based, and highly sensitive, utilizing easily 
accessible biological specimens such as blood, saliva, urine, etc. 
[42]. Apart from Mtb DNA and cell wall LAM component detec-
tion, there are various other biomarkers from the perspective of the 
pathogen, such as the Ag85 complex [43], ESAT-6, CFP-10 [44], 
etc. There are several immune response biomarkers that are under 
the pipeline in the process of POCT development. C-reactive pro-
tein (CRP) is one such host immune biomarker of infection and 
inflammation. Although reliable POCTs for detecting CRP are 
widely available and CRP is a sensitive marker [45], it is a non-
specific biomarker of infection and inflammation. Therefore, it can 
be included in the combined biomarker approach. Another possible 
biomarker that is being extensively studied with promising results 
is host immune response antibodies. A report suggested a direct 
correlation of TB-specific immunoglobulin G4 with disease activ-
ity [46]. A few cluster of differentiation markers are also being 
studied by flow cytometry and have attained specificity and sensi-
tivity compatible with the target product profile (by WHO) for 
confirmatory tests [47]. One of the studies evaluated the host 
serum protein biomarkers of TB in LMICs and indicated comple-
ment factor H as the best suitable biomarker for functioning as 
point-of-care screening [48]. Although multiple studies have been 
performed in the discovery of TB-specific biomarkers, the poten-
tial biomarkers thus identified suffer several challenges, such as 
heterogenous population, variability in a cohort, laboratory vari-
ability, and costs. Various blood-based transcriptional biomarkers 
have also been proposed for the identification of incipient or active 
TB. A systematic review has shown that among the best-perform-
ing blood transcription biomarkers, BATF2, Kaforou25, Roe3, and 
Sweeney3 have equivalent diagnostic accuracy independent of 
HIV status. These biomarkers have attained the minimum criteria 
defined by the WHO for triage tests and not confirmatory tests 
[49]. Another report has demonstrated the role of four-transcript 
signatures in predicting TB progression [50]. One of the studies 
has identified the role of transcriptional biomarkers in treatment 
monitoring as multiple mRNA decline after treatment of TB [51]. 
However, ease of obtaining samples and their processing are some 
of the advantages, but equipment and complexity in the analysis of 
transcriptional signatures halt its usage as a POCT in resource-lim-
ited clinical settings. Recently, a research group assessed the utility 
of 3-gene transcriptomic signatures (BAFT2, ETV7, and CD1C) 
and displayed acceptable diagnostic performance in a resource-
limited set-up [52]. Moreover, expression values of RAB20 and 
INSL3 genes in peripheral blood composed a biosignature that 
accurately classified TB status among patients with advanced HIV 
in two cohorts from LMICs [53]. Identification of several tran-
scriptional biomarkers is still in the pipeline, and the development 
of a panel of markers is in the initial phases of discovery and ana-
lytical validation in multiple cohorts of TB patients both at national 
and international levels. 

 
Artificial intelligence-based interpretation 

Chest radiography is basically performed as a triage test for 
patients with typical symptoms of TB or TB-related risk factors. An 
increasing number of evidence shows that countries with high inci-
dences of TB and low- or middle-income populations are utilizing 
mobile clinics to bring these technologies to high-risk populations 

[54]. Pre-screening with automated chest X-rays before Xpert 
(NAATs) is a promising TB point-of-care diagnostic in a resource-
constraint set-up, as it could substantially reduce cost and increase 
daily throughput [55]. The computer-aided detection (CAD) prod-
ucts use artificial intelligence (AI) to indicate the likelihood of TB 
by analyzing radiographs and determining abnormal scores. The 
WHO has conditionally recommended the use of CAD as an alter-
native to human interpretation of digital chest X-rays for screening 
and triage tests of TB in patients with an age above or equal to 15 
years [56]. The literature on AI applications for healthcare in LMICs 
has been steadily growing in recent years. A study evaluated the effi-
ciency of CAD software for chest X-ray interpretation in the detec-
tion of TB and demonstrated that six CAD software programs 
[Qure.ai (Mumbai, India), DeepTek (Pune, India), Delft Imaging 
(‘s-Hertogenbosch, Netherlands) JF Healthcare (China), OXIPIT 
(Vilnius, Lithuania) and Lunit (Seoul, South Korea)] were working 
at par with expert readers (blinded clinicians) [57]. Researchers in 
different LMICs applied machine learning and signal processing 
methods to digital chest radiographs to identify TB cases [58] and 
drug-resistant TB cases [59]. Recently, a laboratory group from 
LMICs generated an algorithm for the application of AI in the mon-
itoring of medication adherence for TB treatment [60]. Briefly, dif-
ferent types of POCT that are either currently being used or under 
pipeline have been represented in Figures 1 and 2. Some of the 
POCTs that have been included in the WHO guidelines for the rapid 
detection of TB are mentioned in Table 1. 

 
 

Point-of-care modalities for diagnosing latent 
tuberculosis infection 

In latent tuberculosis infection (LTBI), mycobacteria are not 
directly detectable and are hence measured via the host immune 
response against Mtb. For several years, the tuberculin skin test 

                 Review

Figure 1. Representation of the currently used point-of-care tests 
for the diagnosis of tuberculosis. TB-LAMP, tuberculosis-loop-
mediated isothermal amplification; TB, tuberculosis; LF-LAM, 
lateral-flow lipoarabinomannan.
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(TST) has been the keystone test for LTBI diagnosis. Although this 
test is cost-effective and simple, there are several disadvantages, 
such as a double visit for the test, subjective interpretation, cross-
reactivity in persons with BCG vaccination, and no assessment of 
immune anergy. Later, a specific immunodiagnostic test, i.e., the 
interferon (IFN)-γ release assay (IGRA), was developed. The 
cytokine IFN-γ is secreted by T-cells exposed to Mtb-specific anti-
gens ESAT-6 and CFP-10 [61]. Moreover, a chemokine-inducible 
protein-10 (IP-10) has comparable diagnostic accuracy to IFN-γ 
and higher sensitivity in HIV-infected persons. Both techniques, 
TST and IGRA, had comparable abilities to predict short-term pro-
gression to active TB. 

 
Interferon-γ release assay 

IGRAs are in vitro blood tests of cell-mediated immune 
response that measure T cell release of IFN-γ following stimula-
tion by antigens unique to M. tuberculosis (CFP-10 and ESAT-6) 

and a few other mycobacteria [62]. There are basically two types 
of assays used, including enzyme-linked immunosorbent assay 
(ELISA) and enzyme-linked immune absorbent spot (ELISPOT). 
The basic protocol of the two methods is shown in Figure 3. There 
are three commercially available IGRAs, including the 
QuantiFERON-TB Gold In-Tube (QFT-GIT) assay, the 
QuantiFERON-TB Gold Plus (QFT-Plus) assay (ELISA), and the 
tuberculosis-specific enzyme-linked immunospot (T-SPOT-TB) 
assay (ELISPOT). QFT-GIT contains long peptides derived from 
ESAT-6 and CFP-10, and QFT-Plus includes both these long pep-
tides and shorter peptides in an additional tube to induce IFN-γ 
production. The inclusion of peptides for stimulation of CD8 T 
cells has been reported to improve the discrimination of LTBI from 
active TB. The QFT-Plus assay demonstrated a stronger associa-
tion with increased Mtb exposure compared with QFT-GIT in 
adults with LTBI. Although both assays correlated well for LTBI 
diagnosis, the QFT-Plus exhibits a higher sensitivity with similar 
specificity regardless of age. T-SPOT. The TB assay also uses the 
Mtb antigens ESAT-6 and CFP-10 and quantifies the number of 
IFN-γ-producing T cells (spot-forming cells) [63]. Several 
attempts are being made to evaluate the role of QFT assays in 
POCT. One of the previous studies assessed the potential of LFA-
based IGRA and demonstrated good diagnostic accuracy as com-
pared to the QFT-GIT assay [64]. Recently, Miotto et al. (2022) 
studied the performance of the qualitative method of QFT-Plus 
with fluorescence lateral flow reader (QIAreach QFT) in the rapid 
detection of TB infection [65]. One of the studies conducted in 
LMICs has shown the utility of IGRAs in screening for LTBI sta-
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Figure 2. Illustration of a point-of-care test for tuberculosis diagno-
sis which is proposed to be used in the future. CXR, chest X-rays; 
PET/CT, positron emission tomography/computed tomography.

Table 1. Point-of-care tests approved by the World Health 
Organization for diagnosing Mycobacterium tuberculosis (WHO 
2022, update). 

S. no.     Diagnostic platform                     WHO approval status 

1.              SSM                                                                         ✓✓ 
2.              NAATs       TrueNat assay                                        ✓ 
                                    Xpert MTB/RIF                                     ✓ 
                                    Xpert MTB/RIF Utra                             ✓ 
3.              Lateral Flow-LAM assay                                         ✓ 
4.              Chest X-ray                                                               ✓ 
5.              TB-LAMP                                                                 ✓ 
6.              IGRA for LTBI                                                         ✓ 
SSM, sputum smear microscopy; NAATs, nucleic acid amplification tests; MTB/RIF, 
Mycobacterium tuberculosis/rifampicin; LAM, lipoarabinomannan; TB-LAMP, 
tuberculosis-loop-mediated isothermal amplification; IGRA, interferon-γ release 
assay; LTBI, latent tuberculosis infection; WHO, World Health Organization.

Figure 3. Depiction of interferon-γ release assay by enzyme-
linked immunosorbent assay (ELISA) and enzyme-linked immune 
absorbent spot (ELISPOT) for detection of latent tuberculosis. 
PBMCs, peripheral blood mononuclear cells; CFP-10, culture fil-
trate protein-10; ESAT-6,  early secretory antigenic.
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tus conversion [66]. Although modified IGRA tests appear promis-
ing in discriminating between LTBI and active TB, they need fur-
ther validation in both high- and low-risk populations. 

 
Other immunological markers for latent  
tuberculosis infection detection 

There are some targets or immunological markers that have 
been proposed for a long time to distinguish between LTBI and 
active TB. Analysis of cellular profile, CD4 T-cell subset secreting 
tumor necrosis factor (TNF)-α-only with effector memory cell 
phenotype CD45RA-CCR7-CD127, has been known to be associ-
ated with the progression of LTBI to active TB in an immunocom-
petent population [67,68]. Moreover, the cellular response against 
mycobacterial latency-associated antigens, i.e., DosR has been 
important in identifying LTBI or active TB (ATB) individuals. On 
the other hand, the host immune response to different Mtb anti-
gens, such as specific miRNA and molecular signatures, is impor-
tant in blood transcriptome analysis [63]. However, these proposed 
potential candidates need to be validated in distinct populations 
with different risks of TB occurrence.  

 
Cytokines as biomarker for tuberculosis diagnosis: 
potential for point-of-care test 

New biomarkers are required to evaluate both pathogen and 
host key elements in response to infection. Identification of non-
sputum-based biomarkers for predicting the risk of developing 
active TB and adequate responsiveness to treatment is an urgent 
need. Cytokines are key molecules that regulate immunological 
responses and have been extensively studied for their potential as 
diagnostic and prognostic biomarkers of TB. Numerous reports 
have highlighted the role of cytokines as biomarkers in TB infec-
tion reactivation, disease, and cure [69]. Interleukin (IL)-2, IP-10, 
IL-5, and IL-10 had promising diagnostic performance for TB 
infection, including both active TB and LTBI [70]. Some cytokines 
have been shown to have the potential to distinguish among 
patients with ATB and LTBI, such as macrophage inflammatory 
protein (MIP)-1β, TNF-α, IL-12p40, and IL-17. The concentra-
tions of these multiple cytokines change significantly during TB 
treatment, and these levels are determined by multiplex immunoas-
says [71]. Thus, the Bio-plex multiplex assay allows simultaneous 
quantification of up to 500 proteins, peptides, and nucleic acid tar-
gets. Mycobacterial antigen-stimulated eight cytokines, i.e., IL-
1ra, IL-2, IL-10, IL-13, TNF-α, IFN-γ, IP-10, and MIP-1β, were 
significantly higher in TB-infected participants compared with TB-
uninfected individuals, as measured by the Luminex multiplex 
immunoassay [72]. Similarly, the plasma cytokine signatures of 
TNFα, IL-2, and IL-17A demonstrated the potential of an accurate 
biomarker for the diagnosis of pediatric TB [73]. Several other 
studies have also shown various combinations of cytokine bio-
markers proposed to have significance in predicting TB infection, 
as well as discrimination from LTBI and other sick controls. 
Additionally, in one of the studies, 12 biomarkers out of 20 host 
biomarker signatures were shown to have the capability of being a 
POCT for TB triage diagnosis [74]. Besides cytokines, multiplex 
assays are also used for other proteins such as CRP, serum amyloid 
A, serum amyloid P, Ferritin, etc. [75]. Recently, a report suggested 
a panel of chemokines identified by multiplex assay as a diagnostic 
biomarker for pediatric TB [76]. Therefore, the ease of multiplex 
immunoassay and its potential to screen multiple biomarkers in a 
single assay make it an ability to be included in POCT for TB 
infection and treatment outcome. 

All the techniques with potential for POCT have been outlined 
in Figure 4. The basic categorization has been done to clearly indi-
cate the group to which each method belongs. 

 
 

Challenges to the development of point-of-care 
tests 

Over the past decades, there have been several advances in the 
development of point-of-care, but those platforms may have limit-
ed accuracy and impact on TB diagnosis due to several barriers. 
The point-of-care suffers various technical challenges due to the 
complexities of the host and pathogen. The foremost reason 
includes the type of sample, sputum, which is scarce in HIV-infect-
ed children. Other factors found to be responsible might include 
antibody profiles in patients with ATB that overlap with LTBI or 
those with non-tubercular infection. The Mtb antigens can be 
expressed differentially in body compartments, and sometimes 
there is a lack of suitable antigenic targets. The development of 
POCT also confronts issues in test accuracy, which may vary in 
HIV-infected versus uninfected persons and those with pulmonary 
versus extrapulmonary TB. Also, HIV-infected people and those 
with compromised immunity may have colonization with non-
tuberculosus mycobacteria, which might produce false results in 
them [77]. As a lateral flow format has been developed for various 
platforms, sensitivity is often suboptimal when using these assays. 
Previous qualitative research identified themes affecting POCTs, 
which included the main theme, i.e., "relationships" among 
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Figure 4. An overview of point-of-care tests for diagnosing tubercu-
losis infection. NAATs, nucleic acid amplification tests; TB-LAMP, 
tuberculosis-loop-mediated isothermal amplification; LAM, lipoara-
binomannan; IGRA, interferon-γ release assay; TB, tuberculosis; 
CAD4TB, computer-aided detection “4” tuberculosis.
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providers and between providers and patients, influenced by the 
cross-cutting theme of ‘infrastructure [78]. Apart from these diffi-
culties, there is a lack of information on the target product profile, 
a lack of funding for biomarker research, a lack of strong national 
regulatory frameworks, a lack of accountability, transparency, and 
commitment, a weak capacity of program managers to effect 
change, inadequate equipment and staff [79], and variable quality 
of diagnostic services and development of TB-point-of-care, which 
are preferably suitable for resource-rich settings [77]. Recently, a 
group of researchers reviewed POCT based on the two most com-
mon technologies, i.e., LFA and NAATs. Some of the challenges 
with using LFA tests are: limitations in sensitivity; test accuracy 
relies on the quality and preparation of the antibodies; analysis 
time is dependent on the physical properties of the sample; and 
qualitative or semi-quantitative results are obtained. The chal-
lenges with using NAAT-based tests are complex and include 
bulky equipment for thermal cycling; higher power consumption 
and longer turnaround times; requirement of high temperatures of 
95°C to denature double-stranded-DNA by different types of PCR 
(rolling circle amplification, strand displacement amplification, 
and nucleic acid sequence-based amplification); delay in results 
due to additional steps of DNA/RNA processing; dependence of 
the diagnostic performance of NAATs on type of sample used and 
presence of several amplification inhibitors in unprocessed sam-
ples; requirement of more than three primers in LAMP posing a 
high risk of primer dimer formation which can lead to false posi-
tives and undermine the accuracy of the POCT results; cost-effec-
tiveness as a point-of-care; and limited multiplex LAMP assays 
[80]. Hence, much development in the field of TB-POC is still 
required to overcome the confrontations. 

 
 

Conclusions 
TB still represents a continuous challenge to worldwide public 

health. Although several factors contribute to TB control pro-
grams, diagnosis remains an important factor that needs attention. 
Significant advancements in research and development in the field 
of TB diagnostics have already been made. But the progressive 
growth of TB cases necessitates the development of POCT which 
are easily available or employed readily at primary healthcare 
facilities. Also, it is unlikely that a single POCT will be successful 
for all different kinds of populations and resource availability. 
However, a number of TB diagnostic tests that follow partially or 
fully the ideal conditions of POCT laid out by the WHO are cur-
rently being used, and several are in the pipeline. There are some 
techniques that are proposed to have the capability to be utilized as 
POCT in the distant future. As compared to conventional diagnos-
tic platforms, NAATs have gained the most influential center of 
attention in the queue for developing POCT for TB. However, 
GeneXpert (cartridge-based amplification) delivers simultaneous 
detection of TB infection and drug resistance. Several modifica-
tions of native GeneXpert are being developed and studied for 
their utility as POCT. Although the point-of-care Xpert unit cost is 
higher than other tests, it is likely to offer good value for money 
relative to smear microscopy. TB-LAMP also offers good diagnos-
tic potential as compared to conventional microscopy tests. On the 
other hand, the urine-LAM assay provides rapid bedside detection 
of TB. As LAM is a specific molecule of Mtb infection and a 
potent activator of the immune response, it is highly suitable to be 
used as POCT. Thus, the urinary LAM assay is an affordable and 
accessible diagnostic tool that could prove valuable in TB-endemic 
areas. Among the future proposed POCTs, NGS remains out of 

reach for most laboratories due to cost constraints and the require-
ment of skilled personnel and infrastructure in LMICs. Although 
multiple host and pathogen biomarkers are being identified and 
studied in the plasma/serum of TB or LTBI individuals, validation 
of these markers is required, along with cost analysis, to incorpo-
rate them into point-of-care modalities in high-TB-burden coun-
tries. Therefore, this review summarized the diagnostic potential of 
widespread techniques and biomarkers, along with their utility as 
POCT for TB. 
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