Anabolic hormones and heart failure with preserved ejection fraction: looking for Ariadne’s thread

Submitted: December 21, 2020
Accepted: June 29, 2021
Published: August 3, 2021
Abstract Views: 1846
PDF: 734
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome that accounts for more than half of all heart failure patients. Identification, early diagnosis and management of patients are still complex, and no targeted treatment is available, since all tested drugs were not able to lower hard clinical outcomes. A multi-hormonal deficiency syndrome has been described in HFpEF patients suggesting that different hormones may represent new biomarkers of the disease, but their clinical utility is still debated. The natriuretic peptides are the cornerstone biomarker in heart failure, predicting cardiovascular death and heart failure hospitalization. Testosterone and DHEA-S deficiencies have been reported in HFpEF and associated with right ventricular impairment and diastolic dysfunction. IGFBP-1/IGF-1 axis correlates with echocardiographic parameters of HFpEF patients and with several prognostic biomarkers including NT-proBNP and C reactive protein. Low triiodothyronine syndrome is frequently found in HFpEF and thyroid hormones should represent a potential biomarker of risk stratification and prognosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Virani SS, Alonso CA, Benjamin EJ, et al. Heart disease and stroke statistics - 2020 Update a report from the american heart association. Circulation 2020;141:139–596. DOI: https://doi.org/10.1161/CIR.0000000000000746
Bozkurt B, Coats AJS, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 2021;23:352-80. DOI: https://doi.org/10.1002/ejhf.2168
Marra AM, Egenlauf B, Ehlken N, et al. Change of right heart size and function by long-term therapy with riociguat in patients with pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Int J Cardiol 2015;15:19-26. DOI: https://doi.org/10.1016/j.ijcard.2015.05.105
Marra AM, Arcopinto M, Bossone E, et al. Pulmonary arterial hypertension-related myopathy: an overview of current data and future perspectives. Nutr Metab Cardiovasc Dis 2015;25:131-9. DOI: https://doi.org/10.1016/j.numecd.2014.10.005
Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018;243:213-21. DOI: https://doi.org/10.1177/1535370217750088
Salzano A, Marra AM, D'Assante R, et al. Biomarkers and imaging: complementary or subtractive? Heart Fail Clin 2019;15:321-33. DOI: https://doi.org/10.1016/j.hfc.2018.12.008
De Luca M, Bosso G, Valvano A, et al. Management of patients with chronic heart failure and type 2 diabetes mellitus: the SCODIAC-II study. Intern Emerg Med 2021;16:895-903. DOI: https://doi.org/10.1007/s11739-020-02528-4
Suzuki T, Lyon A, Saggar R, et al. Editor's Choice - Biomarkers of acute cardiovascular and pulmonary diseases. Eur Heart J Acute Card 2016;5:416-33. DOI: https://doi.org/10.1177/2048872616652309
Arcopinto M, Salzano A, Isgaard J, Cittadini A. Hormone replacement therapy in heart failure. Curr Opin Cardiol 2015;30:277-84. DOI: https://doi.org/10.1097/HCO.0000000000000166
Bossone E, Arcopinto M, Iacoviello M. Multiple hormonal and metabolic deficiency syndrome in chronic heart failure: rationale, design, and demographic characteristics of the T.O.S.CA. Intern Emerg Med 2018;13:661-71. DOI: https://doi.org/10.1007/s11739-018-1844-8
Senni M, D'Elia E, Emdin M, Vergaro G. Biomarkers of heart failure with preserved and reduced ejection fraction. Handb Exp Pharmaco. 2017;243:79-108. DOI: https://doi.org/10.1007/164_2016_86
Tromp J, Khan MA, Klip IT, et al. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 2017;30:6. DOI: https://doi.org/10.1161/JAHA.116.003989
Salzano A, Marra AM, Ferrara F, et al. Multiple hormone deficiency syndrome in heart failure with preserved ejection fraction. Int J Cardiol 2016; 225:1-3. DOI: https://doi.org/10.1016/j.ijcard.2016.09.085
Arcopinto M, Salzano A, Bossone E, et al. Multiple hormone deficiencies in chronic heart failure. Int J Cardiol 2015;184:421-3. DOI: https://doi.org/10.1016/j.ijcard.2015.02.055
Napoli R, D'Assante R, Miniero M, et al. Anabolic deficiencies in heart failure: ready for prime time? Heart Fail Clin 2020;16:11-21. DOI: https://doi.org/10.1016/j.hfc.2019.08.012
Salzano A, Cittadini A, Bossone E, et al. Multiple hormone deficiency syndrome: a novel topic in chronic heart failure. Future Sci OA 2018;16:4. DOI: https://doi.org/10.4155/fsoa-2018-0041
Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP, et al. Validation of the HFA-PEFF score for the diagnosis of heart failure with preserved ejection fraction. Eur J Heart Fail 2020;22:413-21. DOI: https://doi.org/10.1002/ejhf.1614
D'Elia E, Vaduganathan M, Gori M, et al. Role of biomarkers in cardiac structure phenotyping in heart failure with preserved ejection fraction: critical appraisal and practical use. Eur J Heart Fail 2015;17:1231-9. DOI: https://doi.org/10.1002/ejhf.430
Singh S, Pandey A, Neeland IJ. Diagnostic and prognostic considerations for use of natriuretic peptides in obese patients with heart failure. Prog Cardiovasc Dis 2020;63:649-55. DOI: https://doi.org/10.1016/j.pcad.2020.09.006
Tschöpe C, Kasner M, Westermann D, et al. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J 2005;26:2277-84. DOI: https://doi.org/10.1093/eurheartj/ehi406
Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with doppler velocity recordings. Circulation 2002;105:595–601. DOI: https://doi.org/10.1161/hc0502.103010
Mogelvang R, Goetze JP, Pedersen SA, et al. Preclinical systolic and diastolic dysfunction assessed by tissue doppler imaging is associated with elevated plasma pro-B-type natriuretic peptide concentrations. J Card Fail 2009; 5:489–95. DOI: https://doi.org/10.1016/j.cardfail.2009.01.005
Brouwers FP, van Gilst WH, Damman K, et al. Clinical risk stratification optimizes value of biomarkers to predict new-onset heart failure in a community-based cohort. Circ Heart Fail 2014;7:723–31. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.114.001185
Cleland JG, Tendera M, Adamus J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006;27:2338-45. DOI: https://doi.org/10.1093/eurheartj/ehl250
Anand IS, Rector TS, Cleland JG, et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE trial. Circ Heart Fail 2011;4:569-77. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.111.962654
Volterrani M, Rosano G, Iellamo F. Testosterone and heart failure. Endocrine 2012;42:272–7. DOI: https://doi.org/10.1007/s12020-012-9725-9
D'Assante R, Piccioli L, Valente P, et al. Testosterone treatment in chronic heart failure. Review of literature and future perspectives. Monaldi Arch Chest Dis 2018;88:976. DOI: https://doi.org/10.4081/monaldi.2018.976
Zhao D, Guallar E, Ballantyne CM, et al. Sex hormones and incident heart failure in men and postmenopausal women: the atherosclerosis risk in communities study. J Clin Endocrinol Metab 2020;105:e3798-807. DOI: https://doi.org/10.1210/clinem/dgaa500
Favuzzi AMR, Venuti A, Bruno C, et al. Hormonal deficiencies in heart failure with preserved ejection fraction: prevalence and impact on diastolic dysfunction: a pilot study. Eur Rev Med Pharmac 2020;24:352-61.
Bruno C, Silvestrini A, Calarco R, et al. Anabolic hormones deficiencies in heart failure with preserved ejection fraction: prevalence and impact on antioxidants levels and myocardial dysfunction. Front Endocrinol (Lausanne) 2020;11:281. DOI: https://doi.org/10.3389/fendo.2020.00281
Mancini A, Fuvuzzi AMR, Bruno C, et al. Anabolic hormone deficiencies in heart failure with reduced or preserved ejection fraction. Int J Endocrinol 2020;2020:5798146. DOI: https://doi.org/10.1155/2020/5798146
D'Assante R, Napoli R, Salzano A, et al. Human heart shifts from IGF-1 production to utilization with chronic heart failure. Endocrine 2019;65:714-716. DOI: https://doi.org/10.1007/s12020-019-01993-y
Arcopinto M, Salzano A, Giallauria F, et al. Growth hormone deficiency is associated with worse cardiac function, physical performance, and outcome in chronic heart failure: insights from the T.O.S.CA. GHD study. PLoS One 2017;12:e0170058. DOI: https://doi.org/10.1371/journal.pone.0170058
Motiwala SR, Szymonifka J, Belcher A, et al. Measurement of novel biomarkers to predict chronic heart failure outcomes and left ventricular remodeling. Cardiovasc Transl Res 2014;7:250-61. DOI: https://doi.org/10.1007/s12265-013-9522-8
Arcopinto M, Bobbio E, Bossone E, et al. The GH/IGF-1 axis in chronic heart failure. Endocr Metab Immune Disord Drug Targets 2013;13:76-91. DOI: https://doi.org/10.2174/1871530311313010010
D'Assante R, Arcopinto M, Rengo G, et al. Myocardial expression of somatotropic axis, adrenergic, and calcium handling genes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. ESC Heart Fail 2021;8:1681-6. DOI: https://doi.org/10.1002/ehf2.13067
Barroso MC, Kramer F, Greene SJ, et al. Serum insulin-like growth factor-1 and its binding protein-7: potential novel biomarkers for heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2016;16:199. DOI: https://doi.org/10.1186/s12872-016-0376-2
Faxén UL, Hage C, Benson L, et al. HFpEF and HFrEF display different phenotypes as assessed by IGF-1 and IGFBP-1. J Card Fail 2017;23:293-303. DOI: https://doi.org/10.1016/j.cardfail.2016.06.008
Cerbone M, Capalbo D, Wasniewska M, et al. Effects of L-thyroxine treatment on early markers of atherosclerotic disease in children with subclinical hypothyroidism. Eur J Endocrinol 2016;175:11-9. DOI: https://doi.org/10.1530/EJE-15-0833
Neves JS, Vale C, von Hafe M, et al. Thyroid hormones and modulation of diastolic function: a promising target for heart failure with preserved ejection fraction. Ther Adv Endocrinol Metab 2020;11:2042018820958331. DOI: https://doi.org/10.1177/2042018820958331
Vale, C, Neves, JS, von Hafe, M, et al. The role of thyroid hormones in heart failure. Cardiovasc Drugs Ther 2019;33:179-88. DOI: https://doi.org/10.1007/s10557-019-06870-4
Selvaraj S, Klein I, Danzi S, et al. Association of serum triiodothyronine with B-type natriuretic peptide and severe left ventricular diastolic dysfunction in heart failure with preserved ejection fraction. Am J Cardiol 2012;110:234-9. DOI: https://doi.org/10.1016/j.amjcard.2012.02.068
Irace L, Pergola V, Di Salvo G et al. Work capacity and oxygen uptake abnormalities in hyperthyroidism. Minerva Cardioangiol 2006;54:355-62.
Virtanen, VK, Saha, HH, Groundstroem, KW, et al. Thyroid hormone substitution therapy rapidly enhances left-ventricular diastolic function in hypothyroid patients. Cardiology 2001;96:59–64. DOI: https://doi.org/10.1159/000047390
Sanders-van Wijk S, van Empel V, Davarzani N, et al. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur J Heart Fail 2015;17:1006-14. DOI: https://doi.org/10.1002/ejhf.414
de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011;43:60-8. DOI: https://doi.org/10.3109/07853890.2010.538080
Salzano A, Israr MZ, Yazaki Y, et al. Combined use of trimethylamine N-oxide with BNP for risk stratification in heart failure with preserved ejection fraction: findings from the DIAMONDHFpEF study. Eur J Prev Cardiol 2020;27:2159-62. DOI: https://doi.org/10.1177/2047487319870355
Marra AM, Arcopinto M, Salzano A, et al. Detectable interleukin-9 plasma levels are associated with impaired cardiopulmonary functional capacity and all-cause mortality in patients with chronic heart failure. Int J Cardiol 2016;15:114-7. DOI: https://doi.org/10.1016/j.ijcard.2016.02.017
Pergola V, Di Salvo G, Martiniello AR, et al. [TNF alpha e scompenso cardiaco].[Article in Italian]. Minerva Cardioangiol 2000;48:475-84.
Chung ES, Packer M, Lo KH, et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107:3133-4. DOI: https://doi.org/10.1161/01.CIR.0000077913.60364.D2
Carrasco-Sánchez FJ, Galisteo-Almeda L, Páez-Rubio I, et al. Prognostic value of cystatin C on admission in heart failure with preserved ejection fraction. J Card Fail 2011;17:31-8. DOI: https://doi.org/10.1016/j.cardfail.2010.07.248
Caminiti G, Volterrani M, Iellamo F, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol 2009;54:919-27. DOI: https://doi.org/10.1016/j.jacc.2009.04.078
Iellamo F, Volterrani M, Caminiti G et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol 2010;56:1310-6. DOI: https://doi.org/10.1016/j.jacc.2010.03.090
Cittadini A, Marra AM, Arcopinto M, et al. Growth hormone replacement delays the progression of chronic heart failure combined with growth hormone deficiency: an extension of a randomized controlled single-blind study. JACC Heart Fail 2013;1:325-30. DOI: https://doi.org/10.1016/j.jchf.2013.04.003
Salzano A, D'Assante R, Lander M, et al. Hormonal replacement therapy in heart failure: focus on growth hormone and testosterone. Heart Fail Clin 2015;15:377-91. DOI: https://doi.org/10.1016/j.hfc.2019.02.007
Salzano A, Marra AM, D'Assante R, et al. Growth hormone therapy in heart failure. Heart Fail Clin 2018;14:501-15. DOI: https://doi.org/10.1016/j.hfc.2018.05.002
Salzano A, Marra AM, Arcopinto M, et al. Combined effects of growth hormone and testosterone replacement treatment in heart failure. ESC Heart Fail 2019;6:1216-1. DOI: https://doi.org/10.1002/ehf2.12520
Cleland JG, Taylor J, Freemantle N, et al. Relationship between plasma concentrations of N-terminal pro brain natriuretic peptide and the characteristics and outcome of patients with a clinical diagnosis of diastolic heart failure: a report from the PEP-CHF study. Eur J Heart Fail 2012;14:487-94. DOI: https://doi.org/10.1093/eurjhf/hfs049
Shah KB, Kop WJ, Christenson RH, et al. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Clin Chem 2011;57:874-82. DOI: https://doi.org/10.1373/clinchem.2010.159277

How to Cite

De Luca, Mariarosaria, Giulia Crisci, Federica Giardino, Valeria Valente, Ilaria Amaranto, Olimpia Iacono, Roberta D’Assante, Francesco Giallauria, and Alberto M. Marra. 2021. “Anabolic Hormones and Heart Failure With Preserved Ejection Fraction: Looking for Ariadne’s Thread”. Monaldi Archives for Chest Disease 92 (1). https://doi.org/10.4081/monaldi.2021.1743.