COVID myocarditis: a review of the literature

Submitted: September 19, 2023
Accepted: October 19, 2023
Published: November 3, 2023
Abstract Views: 918
PDF_early view: 603
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Myocarditis is a potentially fatal complication of coronavirus disease 2019 (COVID‐19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. COVID‐19 myocarditis appears to have distinct inflammatory characteristics that distinguish it from other viral etiologies. COVID‐19 myocarditis can present with symptoms ranging from dyspnea and chest pain to acute heart failure and death. It is critical to detect any cases of myocarditis, especially fulminant myocarditis, which can be characterized by signs of heart failure and arrhythmias. Serial troponins, echocardiography, and electrocardiograms should be performed as part of the initial workup for suspected myocarditis. The second step in detecting myocarditis is cardiac magnetic resonance imaging and endomyocardial biopsy. Treatment for COVID‐19 myocarditis is still debatable; however, combining intravenous immunoglobulins and corticosteroids may be effective, especially in cases of fulminant myocarditis. Overall, more research is needed to determine the incidence of COVID‐19 myocarditis , and the use of intravenous immunoglobulins and corticosteroids in combination requires large randomized controlled trials to determine efficacy. The purpose of this review is to summarize current evidence on the subject.

This review aims to summarise current evidence on this topic.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Dong E, Du H, Gardner L. An interactive web‐based dashboard to track COVID‐19 in real time. Lancet Infect Dis 2020;20:533-4. DOI: https://doi.org/10.1016/S1473-3099(20)30120-1
Cascella M, Rajnik M, Aleem A, Dulebohn SC, di Napoli R. Features, evaluation, and treatment of coronavirus (COVID‐19). StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2022.
World Health Organization. WHO Coronavirus (COVID‐19) Dashboard. Accessed: September 13, 2021. Available from: https://covid19.who.int
Santoso A, Pranata R, Wibowo A, et al. Cardiac injury is associated with mortality and critically ill pneumonia in COVID-19: A meta-analysis. Am J Emerg Med 2021:44:352-7. DOI: https://doi.org/10.1016/j.ajem.2020.04.052
Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol 2020;92:1875-83. DOI: https://doi.org/10.1002/jmv.26050
Parasher A. COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 2021;97:312. DOI: https://doi.org/10.1136/postgradmedj-2020-138577
Li W, Moore MJ, Vasilieva N, et al. Angiotensin‚ converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-4. DOI: https://doi.org/10.1038/nature02145
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012;4:1011-33. DOI: https://doi.org/10.3390/v4061011
Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 2020;324:782-93. DOI: https://doi.org/10.1001/jama.2020.12839
Cooper LT Jr. Myocarditis. N Engl J Med 2009;360:1526-38. DOI: https://doi.org/10.1056/NEJMra0800028
Baboonian C, Treasure T. Meta‐analysis of the association of enteroviruses with human heart disease. Heart 1997;78:539–543. DOI: https://doi.org/10.1136/hrt.78.6.539
Caforio ALP, Calabrese F, Angelini A et al. A prospective study of biopsy‐proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 2007;28:1326-33. DOI: https://doi.org/10.1093/eurheartj/ehm076
Agrawal AS, Garron T, Tao X, et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 2015;89:3659-70. DOI: https://doi.org/10.1128/JVI.03427-14
Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 2008;3:127-55. DOI: https://doi.org/10.1146/annurev.pathmechdis.3.121806.151534
Seko Y, Takahashi N, Yagita H, et al. Expression of cytokine mRNAs in murine hearts with acute myocarditis caused by coxsackievirus B3. J Pathol 1997;183:105-8. DOI: https://doi.org/10.1002/(SICI)1096-9896(199709)183:1<105::AID-PATH1094>3.0.CO;2-E
Cihakova D, Sharma R, Fairweather D, et al. Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol Med 2004;102:17-93.
Zhang P, Cox CJ, Alvarez KM, Cunningham MW. Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol 2009;183:27-31. DOI: https://doi.org/10.4049/jimmunol.0800861
Blyszczuk P, Kania G, Dieterle T, et al. Myeloid differentiation factor‐88/interleukin‐1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 2009;105:912-20. DOI: https://doi.org/10.1161/CIRCRESAHA.109.199802
Baldeviano GC, Barin JG, Talor MV, et al. Interleukin‐17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circul Res 2010;106:1646-55. DOI: https://doi.org/10.1161/CIRCRESAHA.109.213157
Oleszak F, Maryniak A, Botti E, et al. Myocarditis associated with COVID‐19. Am J Med Case Rep 2020;8:498-502. DOI: https://doi.org/10.12691/ajmcr-8-12-19
Qian Z, Travanty EA, Oko L, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome‐coronavirus. Am J Respir Cell Mol Biol 2013;48:742-8. DOI: https://doi.org/10.1165/rcmb.2012-0339OC
Goulter AB, Goddard MJ, Allen JC, Clark KL. ACE2 gene expression is up‐regulated in the human failing heart. BMC Med 2004;2:19. DOI: https://doi.org/10.1186/1741-7015-2-19
Sharma YP, Agstam S, Yadav A, et al. Cardiovascular manifestations of COVID‐19: an evidence‐based narrative review. Indian J Med Res 2021;153:7-16. DOI: https://doi.org/10.4103/ijmr.IJMR_2450_20
Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock. Eur J Heart Fail 2020;22:911-15. DOI: https://doi.org/10.1002/ejhf.1828
Oudit GY, Kassiri Z, Jiang C, et al. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 2009;39:618-25. DOI: https://doi.org/10.1111/j.1365-2362.2009.02153.x
Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID‐ 19‐related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020;17:1463-71. DOI: https://doi.org/10.1016/j.hrthm.2020.05.001
Kawakami R, Sakamoto A, Kawai K, et al. Pathological evidence for SARS‐CoV‐2 as a cause of myocarditis: JACC review topic of the week. J Am Coll Cardiol 2021;77:314-25. DOI: https://doi.org/10.1016/j.jacc.2020.11.031
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID‐19. Lancet 2020;395:1417–8. DOI: https://doi.org/10.1016/S0140-6736(20)30937-5
Fox SE, Falgout L, vandar Heide RS. COVID‐19 myocarditis: quantitative analysis of the inflammatory infiltrate and a proposed mechanism. Cardiovasc Pathol 2021;54:107361. DOI: https://doi.org/10.1016/j.carpath.2021.107361
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124:188–95. DOI: https://doi.org/10.1182/blood-2014-05-552729
Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID‐19: an overview of the involvement of the chemokine/ chemokine‐receptor system. Cytokine Growth Factor Rev 2020;53:25-32. DOI: https://doi.org/10.1016/j.cytogfr.2020.05.003
Talasaz AH, Sadeghipour P, Kakavand H, et al. Recent randomized trials of antithrombotic therapy for patients with COVID‐19: JACC state‐ of‐the‐art review. J Am Coll Cardiol 2021;77:1903-21. DOI: https://doi.org/10.1016/j.jacc.2021.02.035
Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID‐19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 2020;116:1666-87. DOI: https://doi.org/10.1093/cvr/cvaa106
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID‐19). JAMA Cardiol 2020;5:811-8. DOI: https://doi.org/10.1001/jamacardio.2020.1017
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID‐19 in China. Clin Res Cardiol 2020;109:531-8. DOI: https://doi.org/10.1007/s00392-020-01626-9
Halushka MK, vandar Heide RS. Myocarditis is rare in COVID‐19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol 2021;50:107300. DOI: https://doi.org/10.1016/j.carpath.2020.107300
Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID‐19). JAMA Cardiol 2020;5:1265-73. DOI: https://doi.org/10.1001/jamacardio.2020.3557
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID‐19 in Wuhan, China. JAMA Cardiol 2020;5:802-10. DOI: https://doi.org/10.1001/jamacardio.2020.0950
Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020;46:846-8. DOI: https://doi.org/10.1007/s00134-020-05991-x
Laganà N, Cei M, Evangelista I, et al. Suspected myocarditis in patients with COVID‐19: a multicenter case series. Medicine (Baltimore) 2021;100:e24552. DOI: https://doi.org/10.1097/MD.0000000000024552
Omidi F, Hajikhani B, Kazemi SN, et al. COVID‐19 and cardiomyopathy: a systematic review. Front Cardiovasc Med 2021;8:695206. DOI: https://doi.org/10.3389/fcvm.2021.695206
Guo J, Wei X, Li Q, et al. Single‐cell RNA analysis on ACE2 expression provides insights into SARS‐CoV‐2 potential entry into the bloodstream and heart injury. J Cell Physiol 2020;235:9884-94. DOI: https://doi.org/10.1002/jcp.29802
Ma M, Xu Y, Su Y, et al. Single‐cell transcriptome analysis decipher new potential regulation mechanism of ACE2 and NPs signaling among heart failure patients infected with SARS‐CoV‐2. Front Cardiovasc Med 2021;8:628885. DOI: https://doi.org/10.3389/fcvm.2021.628885
Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2. Cardiovasc Res 2020;116:1097-100. DOI: https://doi.org/10.1093/cvr/cvaa078
Pan D, Sze S, Minhas JS, et al. The impact of ethnicity on clinical outcomes in COVID‐19: a systematic review. EClinicalMedicine 2020;23:100404. DOI: https://doi.org/10.1016/j.eclinm.2020.100404
Myers VD, Gerhard GS, McNamara DM, et al. Association of variants in BAG3 with cardiomyopathy outcomes in African American Individuals. JAMA Cardiol 2018;3:929-38. DOI: https://doi.org/10.1001/jamacardio.2018.2541
Leigh JA, Alvarez M, Rodriguez CJ. Ethnic minorities and coronary heart disease: an update and future directions. Curr Atheroscler Rep 2016;18:9. DOI: https://doi.org/10.1007/s11883-016-0559-4
Abuelgasim E, Saw LJ, Shirke M, et al. COVID‐19: Unique public health issues facing Black, Asian and minority ethnic com‐ munities. Curr Probl Cardiol 2020;45:100621. DOI: https://doi.org/10.1016/j.cpcardiol.2020.100621
Vinciguerra M, Greco E. Sars‐CoV‐2 and black population: ACE2 as shield or blade? Infect Genet Evol 2020;84:104361. DOI: https://doi.org/10.1016/j.meegid.2020.104361
Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation 2015;132:e273-80. DOI: https://doi.org/10.1161/CIR.0000000000000239
Daniels CJ, Rajpal S, Greenshields JT, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS‐CoV‐2 infection. JAMA Cardiol 2021;6:1078-87. DOI: https://doi.org/10.1001/jamacardio.2021.2065
Rajpal S, Tong MS, Borchers J, et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID‐19 infection. JAMA Cardiol 2021;6:116-8. DOI: https://doi.org/10.1001/jamacardio.2020.4916
Paul P, France AM, Aoki Y J, et al. Genomic surveillance for SARS-CoV-2 variants circulating in the United States, December 2020-May 2021. MMWR Morb Mortal Wkly Rep 2021;70:846-50. DOI: https://doi.org/10.15585/mmwr.mm7023a3
Twohig KA, Nyberg T, Zaidi A J, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2022;22:35-42. DOI: https://doi.org/10.1016/S1473-3099(21)00475-8
Nyberg T, Ferguson NM, Nash SG J, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet 2022;399:1303-12. DOI: https://doi.org/10.1016/S0140-6736(22)00462-7
Bahl A, Mielke N, Johnson S J, et al. Severe COVID-19 outcomes in pediatrics: an observational cohort analysis comparing alpha, delta, and omicron variants. Lancet Reg Health Am 2023;18:100405. DOI: https://doi.org/10.1016/j.lana.2022.100405
Zhang L, Wei X, Wang H J, et al. Cardiac involvement in patients recovering from Delta variant of COVID-19: a prospective multi-parametric MRI study. ESC Heart Fail 2022;9:2576-84. DOI: https://doi.org/10.1002/ehf2.13971
Lionte C, Sorodoc V, Haliga RE J, et al. Inflammatory and cardiac biomarkers in relation with post-acute COVID-19 and mortality: what we know after successive pandemic waves. Diagnostics (Basel) 2022;12:1373. DOI: https://doi.org/10.3390/diagnostics12061373
Kim IC, Kim JY, Kim HA, Han S. COVID‐19‐related myocarditis in a 21‐year‐old female patient. Eur Heart J 2020;41:1859. DOI: https://doi.org/10.1093/eurheartj/ehaa288
Das BB. SARS‐CoV‐2 myocarditis in a high school athlete after COVID‐19 and its implications for clearance for sports. Children (Basel) 2021;8:427. DOI: https://doi.org/10.3390/children8060427
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID‐19). JAMA Cardiol 2020;5:819-24. DOI: https://doi.org/10.1001/jamacardio.2020.1096
Fried JA, Ramasubbu K, Bhatt R, et al. The variety of cardiovascular presentations of COVID‐19. Circulation 2020;141:1930-6. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.047164
Okor I, Sleem A, Zhang A, et al. Suspected COVID‐19‐induced myopericarditis. Ochsner J 2021;21:181-6. DOI: https://doi.org/10.31486/toj.20.0090
Ho JS, Sia CH, Chan MY, et al. Coronavirus‐induced myo‐ carditis: a meta‐summary of cases. Heart Lung J Crit Care 2020;49:681-5. DOI: https://doi.org/10.1016/j.hrtlng.2020.08.013
Gaine S, Devitt P, Coughlan JJ, Pearson I. COVID‐19‐associated myocarditis presenting as new‐onset heart failure and atrial fibrillation. BMJ Case Rep 2021;14:e244027. DOI: https://doi.org/10.1136/bcr-2021-244027
Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc 2009;84:1001-9. DOI: https://doi.org/10.4065/84.11.1001
Smith SC, Ladenson JH, Mason JW, Jaffe AS. Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 1997;95:163-8. DOI: https://doi.org/10.1161/01.CIR.95.1.163
Sawalha K, Abozenah M, Kadado AJ, et al. Systematic review of COVID‐19 related myocarditis: insights on management and outcome. Cardiovasc Revascular Med 2021;23:107-13. DOI: https://doi.org/10.1016/j.carrev.2020.08.028
Tschöpe C, Cooper LT, Torre‐Amione G, van Linthout S. Management of myocarditis‐related cardiomyopathy in adults. Circ Res 2019;124:1568-83. DOI: https://doi.org/10.1161/CIRCRESAHA.118.313578
Ferreira VM, Schulz‐Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 2018;72:3158-76. DOI: https://doi.org/10.1016/j.jacc.2018.09.072
Friedrich MG, Sechtem U, Schulz‐Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 2009;53:1475-87. DOI: https://doi.org/10.1016/j.jacc.2009.02.007
Leone O, Veinot JP, Angelini A, et al. 2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 2012;21:245-74. DOI: https://doi.org/10.1016/j.carpath.2011.10.001
Aretz HT. Myocarditis: the Dallas criteria. Human Pathol 1987;18:619-24. DOI: https://doi.org/10.1016/S0046-8177(87)80363-5
Anthony RM, Nimmerjahn F, Ashline DJ, et al. Recapitulation of IVIG anti‐inflammatory activity with a recombinant IgG Fc. Science 2008;320:373-6. DOI: https://doi.org/10.1126/science.1154315
Maisch B, Hufnagel G, Kölsch S, et al. Treatment of inflammatory dilated cardiomyopathy and (peri)myocarditis with immunosuppression and i.v. immunoglobulins. Herz 2004;29:624-36. DOI: https://doi.org/10.1007/s00059-004-2628-7
Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J 2021;42:206. DOI: https://doi.org/10.1093/eurheartj/ehaa190
Fairweather D, Cooper LT, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol 2013;38:7-46. DOI: https://doi.org/10.1016/j.cpcardiol.2012.07.003
Kyto V, Sipila J, Rautava P. The effects of gender and age on occurrence of clinically suspected myocarditis in adulthood. Heart 2013;99:1681-4. DOI: https://doi.org/10.1136/heartjnl-2013-304449
Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020;26:1636-43. DOI: https://doi.org/10.1038/s41591-020-1051-9
Takahashi T, Ellingson MK, Wong P, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020;588:315-20. DOI: https://doi.org/10.1038/s41586-020-2700-3
Lau ES, McNeill JN, Paniagua SM, et al. Sex differences in inflammatory markers in patients hospitalized with COVID-19 infection: insights from the MGH COVID-19 patient registry. PLoS One 2021;16:e0250774. DOI: https://doi.org/10.1371/journal.pone.0250774
Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation 2021;144:471-84. DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.056135
Root-Bernstein R, Fairweather D. Complexities in the relationship between infection and autoimmunity. Curr Allergy Asthma Rep 2014;14:407. DOI: https://doi.org/10.1007/s11882-013-0407-3
Root-Bernstein R, Fairweather D. Unresolved issues in theories of autoimmune disease using myocarditis as a framework. J Theor Biol 2015;375:101-23. DOI: https://doi.org/10.1016/j.jtbi.2014.11.022
Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23:165-75. DOI: https://doi.org/10.1016/j.immuni.2005.06.008
Alameh MG, Tombacz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021;54:2877-2892.e7. DOI: https://doi.org/10.1016/j.immuni.2021.11.001
Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016;7:319-34. DOI: https://doi.org/10.4155/tde-2016-0006
Thurner L, Kessel C, Fadle N, et al. IL-1RA antibodies in myocarditis after SARS-CoV-2 vaccination. N Engl J Med 2022;387:1524-7. DOI: https://doi.org/10.1056/NEJMc2205667
Huang X, Sun Y, Su G, et al. Intravenous immunoglobulin therapy for acute myocarditis in children and adults. Int Heart J 2019;60:359-65. DOI: https://doi.org/10.1536/ihj.18-299
Tschöpe C, van Linthout SS, Pieske B, Kühl U. Immunosuppression in lymphocytic myocarditis with parvovirus B19 presence. Eur J Heart Failure 2018;20:609. DOI: https://doi.org/10.1002/ejhf.1560
Abdelnabi M, Eshak N, Saleh Y, Almaghraby A. Coronavirus disease 2019 myocarditis: insights into pathophysiology and management. Eur Cardiol Rev 2020;15:e51. DOI: https://doi.org/10.15420/ecr.2020.16
Chen HS, Wang W, Wu SN, Liu JP. Corticosteroids for viral myocarditis. Cochrane Database Syst Rev 2013;2013:CD004471. DOI: https://doi.org/10.1002/14651858.CD004471.pub3
Zhao H, Zhu Q, Zhang C, et al. Tocilizumab combined with favipiravir in the treatment of COVID‐19: a multicenter trial in a small sample size. Biomed Pharmacother 2021;133:110825. DOI: https://doi.org/10.1016/j.biopha.2020.110825
[No Authors Listed]. Part 7.3: management of symptomatic bradycardia and tachycardia. Circulation 2005;112:IV‐67–IV‐77. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.166558
Writing Committee, Gluckman TJ, Bhave NM, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2022;79:1717-56. DOI: https://doi.org/10.1016/j.jacc.2022.02.003

How to Cite

Cersosimo, Angelica, Mattia Di Pasquale, Gianmarco Arabia, Marco Metra, and Enrico Vizzardi. 2023. “COVID Myocarditis: A Review of the Literature”. Monaldi Archives for Chest Disease, November. https://doi.org/10.4081/monaldi.2023.2784.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.