New noninvasive modalities in long-term pediatric ventilation: a scoping review

Submitted: November 4, 2023
Accepted: May 6, 2024
Published: July 23, 2024
Abstract Views: 33
PDF_EARLY VIEW: 8
SUPPLEMENTARY MATERIAL: 1
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Long-term noninvasive ventilation modalities for the pediatric population have undergone a continuous evolution. Hybrid noninvasive ventilation modalities have been recently introduced in clinical practice. Combining the advantages of conventional ventilation, hybrid modes use algorithms that automatically adjust the ventilator’s settings to achieve a predefined ventilation target. Most of the recommendations on the use and settings of hybrid noninvasive ventilation modalities in children are derived from adult experience. Therefore, there is a lack of evidence on its implementation in pediatric chronic respiratory diseases. This scoping review aims to map the existing information regarding the use of hybrid ventilation modalities in the pediatric population and identify knowledge or research gaps. We performed a literature search using MEDLINE and Pubmed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews. We included 13 studies (ten studies on average volume-assured pressure-support ventilation; two studies on intelligent volume-assured pressure-support ventilation; and one study on adaptive servoventilation). The use of new noninvasive ventilation modes in the pediatric population has been applied for the treatment of neuromuscular and hypoventilation syndromes as an alternative therapeutic option in the case of the failure of conventional noninvasive ventilation. Their widespread use has been hampered by the limited evidence available. Longitudinal studies on a larger number of patients are needed to confirm their effectiveness and evaluate their long-term clinical and functional outcomes.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Pierucci P, Portacci A, Carpagnano GE, et al. The right interface for the right patient in noninvasive ventilation: a systematic review. Expert Rev Respir Med 2022;16:931-44. DOI: https://doi.org/10.1080/17476348.2022.2121706
Amato MB, Barbas CS, Bonassa J, et al. Volume-assured pressure support ventilation (VAPSV). A new approach for reducing muscle workload during acute respiratory failure. Chest 1992;102:1225-34. DOI: https://doi.org/10.1378/chest.102.4.1225
Arellano MP, Gregoretti C, Duiverman M, Windish W. Long-term volume-targeted pressure-controlled ventilation: sense or nonsense? Eur Respir J 2017;49:1602193. DOI: https://doi.org/10.1183/13993003.02193-2016
Battisti A, Tassaux D, Bassin D, Jolliet P. Automatic adjustment of noninvasive pressure support with a bilevel home ventilator in patients with acute respiratory failure: a feasibility study. Intensive Care Med 2007;33:632-8. DOI: https://doi.org/10.1007/s00134-007-0550-1
Kelly JL, Jaye J, Pickersgill RE, et al. Randomized trial of 'intelligent' autotitrating ventilation versus standard pressure support non-invasive ventilation: impact on adherence and physiological outcomes. Respirology 2014; 19:596-603. DOI: https://doi.org/10.1111/resp.12269
Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012;8:597-619. DOI: https://doi.org/10.5664/jcsm.2172
Tricco AC, Lillie E, Zarin W,et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467-73. DOI: https://doi.org/10.7326/M18-0850
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;371:n71. DOI: https://doi.org/10.1136/bmj.n71
Saddi V, Thambipillay G, Pithers S, et al. Average volume-assured pressure support vs conventional bilevel pressure support in pediatric nocturnal hypoventilation: a case series. J Clin Sleep Med 2021;17:925-30. DOI: https://doi.org/10.5664/jcsm.9084
Khayat A, Medin D, Syed F, et al. Intelligent volume-assured pressured support (iVAPS) for the treatment of congenital central hypoventilation syndrome. Sleep Breath 2017;21:513-9. DOI: https://doi.org/10.1007/s11325-017-1478-5
Sunkonkit K, Al-Saleh S, Chiang J, et al. Volume-assured pressure support mode for noninvasive ventilation: can it improve overnight adherence in children with neuromuscular disease?. Sleep Breath 2021;25:1843-50. DOI: https://doi.org/10.1007/s11325-021-02288-1
Vagiakis E, Koutsourelakis I, Perraki E, et al. Average volume-assured pressure support in a 16-year-old girl with congenital central hypoventilation syndrome. J Clin Sleep Med 2010;6:609-12. DOI: https://doi.org/10.5664/jcsm.27997
Saddi V, Teng A, Thambipillay G, et al. Nasal mask average volume-assured pressure support in an infant with congenital central hypoventilation syndrome. Respirol Case Rep 2019;7:e00448. DOI: https://doi.org/10.1002/rcr2.448
Paglietti MG, Porcaro F, Sovtic A, et al. Decannulation in children affected by congenital central hypoventilation syndrome: a proposal of an algorithm from two European centers. Pediatr Pulmonol 2019;54:1663-9. DOI: https://doi.org/10.1002/ppul.24448
Saddi V, Thambipillay G, Teng A. Non-invasive home ventilation using the average volume assured pressure support feature in an infant with severe bronchopulmonary dysplasia and chronic respiratory failure. Pediatr Investig 2020;4:222-4. DOI: https://doi.org/10.1002/ped4.12221
Stowe RC, Afolabi-Brown O. Pulmonary hypertension and chronic hypoventilation in ROHHAD syndrome treated with average-volume assured pressure support. Pediatr Investig 2019;3:253-6. DOI: https://doi.org/10.1002/ped4.12168
Diaz-Abad M, Isaiah A, Rogers VE, et al. Use of noninvasive ventilation with volume-assured pressure support to avoid tracheostomy in severe obstructive sleep apnea. Case Rep Pediatr 2018;2018:4701736. DOI: https://doi.org/10.1155/2018/4701736
Veeravigrom M, Desudchit T. Prevalence of sleep disorders in Thai children. Indian J Pediatr 2016;83:1237-41. DOI: https://doi.org/10.1007/s12098-016-2148-5
Gentin N, Williamson B, Thambipillay G, Teng A. Nocturnal respiratory failure in a child with congenital myopathy - management using average volume-assured pressure support (AVAPS). Respirol Case Rep 2015;3:115-7. DOI: https://doi.org/10.1002/rcr2.117
Lovejoy H, Geib LN, Walters CB. Perioperative pulmonary optimization with average volume-assured pressure support of a pediatric patient with ullrich congenital muscular dystrophy: a case report. A A Pract 2021;15:e01504. DOI: https://doi.org/10.1213/XAA.0000000000001504
Tabone L, Amaddeo A, Khirani S, Fauroux B. Adaptive servoventilation in a pediatric patient. Pediatr Pulmonol 2020;55:850-2. DOI: https://doi.org/10.1002/ppul.24672
Ennis J, Rohde K, Chaput JP, et al. Facilitators and barriers to noninvasive ventilation adherence in youth with nocturnal hypoventilation secondary to obesity or neuromuscular disease. J Clin Sleep Med 2015;11:1409-16. DOI: https://doi.org/10.5664/jcsm.5276
Luján M, Lalmolda C, Ergan B. Basic concepts for tidal volume and leakage estimation in non-invasive ventilation. Turk Thorac J 2019;20:140-6. DOI: https://doi.org/10.5152/TurkThoracJ.2018.177
Crescimanno G, Marrone O, Vianello A. Efficacy and comfort of volume-guaranteed pressure support in patients with chronic ventilatory failure of neuromuscular origin. Respirology 2011;16:672-9. DOI: https://doi.org/10.1111/j.1440-1843.2011.01962.x
Fauroux B, Leroux K, Pépin JL, et al. Are home ventilators able to guarantee a minimal tidal volume?. Intensive Care Med 2010;36:1008-14. DOI: https://doi.org/10.1007/s00134-010-1785-9
Luján M, Sogo A, Grimau C, et al. Influence of dynamic leaks in volume-targeted pressure support noninvasive ventilation: a bench study. Respir Care 2015;60:191-200. DOI: https://doi.org/10.4187/respcare.03413
Luján M, Sogo A, Pomares X, et al. Effect of leak and breathing pattern on the accuracy of tidal volume estimation by commercial home ventilators: a bench study. Respir Care 2013;58:770-7. DOI: https://doi.org/10.4187/respcare.02010
Janssens JP, Metzger M, Sforza E. Impact of volume targeting on efficacy of bi-level non-invasive ventilation and sleep in obesity-hypoventilation. Respir Med 2009;103:165-72. DOI: https://doi.org/10.1016/j.rmed.2008.03.013
Carlucci A, Schreiber A, Mattei A, et al. The configuration of bi-level ventilator circuits may affect compensation for non-intentional leaks during volume-targeted ventilation. Intensive Care Med 2013;39:59-65. DOI: https://doi.org/10.1007/s00134-012-2696-8
Khirani S, Louis B, Leroux K, et al. Harms of unintentional leaks during volume targeted pressure support ventilation. Respir Med 2013;107:1021-9. DOI: https://doi.org/10.1016/j.rmed.2013.03.013
Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev 2010;90:47-112. Erratum in: Physiol Rev 2010;90:797-8. DOI: https://doi.org/10.1152/physrev.00043.2008
Couillard A, Pepin JL, Rabec C, et al. Noninvasive ventilation: efficacy of a new ventilatory mode in patients with obesity-hypoventilation syndrome. Rev Mal Respir 2015;32:283-90. [Article in French]. DOI: https://doi.org/10.1016/j.rmr.2014.02.013
Selim BJ, Wolfe L, Coleman JM 3rd, Dewan NA. Initiation of noninvasive ventilation for sleep related hypoventilation disorders: advanced modes and devices. Chest 2018;153:251-65. DOI: https://doi.org/10.1016/j.chest.2017.06.036
Johnson KG, Johnson DC. Treatment of sleep-disordered breathing with positive airway 783 pressure devices: technology update. Med Devices (Auckl) 2015;23:425-37. DOI: https://doi.org/10.2147/MDER.S70062
Rabec C, Emeriaud G, Amadeo A, et al. New modes in non-invasive ventilation. Paediatr Respir Rev 2016;18:73-84. DOI: https://doi.org/10.1016/j.prrv.2015.10.004
Javaheri S, Harris N, Howard J, Chung E. Adaptive servoventilation for treatment of opioid-associated central sleep apnea. J Clin Sleep Med 2014;10:637-43. DOI: https://doi.org/10.5664/jcsm.3788
Teschler H, Döhring J, Wang YM, Berthon-Jones M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med 2001;164:614-9. DOI: https://doi.org/10.1164/ajrccm.164.4.9908114
Priou P, d'Ortho MP, Damy T, et al. Adaptive servo-ventilation: how does it fit into the treatment of central sleep apnoea syndrome? Expert opinions. Rev Mal Respir 2015;32:1072-81. DOI: https://doi.org/10.1016/j.rmr.2015.09.007
Pierucci P, Di Lecce V, Carpagnano GE, et al. The intermittent abdominal pressure ventilator as an alternative modality of noninvasive ventilatory support: a narrative review. Am J Phys Med Rehabil 2022;101:179-83. DOI: https://doi.org/10.1097/PHM.0000000000001804
Volpi V, Volpato E, Compalati E, et al. Is intermittent abdominal pressure ventilation still relevant? A multicenter retrospective pilot study. J Clin Med 2023;12:2453. DOI: https://doi.org/10.3390/jcm12072453
Fauroux B, Abel F, Amaddeo A, et al. ERS statement on paediatric long-term noninvasive respiratory support. Eur Respir J 2022;59:2101404. DOI: https://doi.org/10.1183/13993003.01404-2021
Linares-Perdomo O, East TD, Brower R, Morris AH. Standardizing predicted body weight equations for mechanical ventilation tidal volume settings. Chest 2015;148:73-8. DOI: https://doi.org/10.1378/chest.14-2843

How to Cite

Pavone, Martino, Giovanni Misseri, Mariachiara Ippolito, Cesare Gregoretti, and Renato Cutrera. 2024. “New Noninvasive Modalities in Long-Term Pediatric Ventilation: A Scoping Review”. Monaldi Archives for Chest Disease, July. https://doi.org/10.4081/monaldi.2024.2841.