Incipient and subclinical tuberculosis: a narrative review

Submitted: March 8, 2024
Accepted: October 21, 2024
Published: January 8, 2025
Abstract Views: 64
PDF_EARLY VIEW: 95
SUPPLEMENTARY MATERIAL: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease. However, recently, the concept of a dynamic spectrum of infection has emerged, wherein the pathogen is initially eradicated by the innate or adaptive immune system, either in conjunction with or independently of T cell priming. Other categories within this spectrum include TB infection, incipient TB, subclinical TB, and active TB disease. Various host- and pathogen-related factors influence these categories. Furthermore, subclinical TB can facilitate the spread of infection within the community. Due to its asymptomatic nature, there is a risk of delayed diagnosis, and some patients may remain undiagnosed. Individuals with subclinical TB may stay in this stage for an indeterminate period without progressing to active TB disease, and some may even experience regression. Early diagnosis and treatment of TB are essential to meet the 2035 targets outlined in the end-TB strategy. This strategy should also include incipient and subclinical TB. This review will focus on the definition, natural history, burden, trajectory, transmissibility, detection, and management of early-stage TB.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Barry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009;7:845-55. DOI: https://doi.org/10.1038/nrmicro2236
Delogu G, Goletti D. The spectrum of tuberculosis infection: new perspectives in the era of biologics. J Rheumatol Suppl 2014;91:11-6 DOI: https://doi.org/10.3899/jrheum.140097
Drain PK, Bajema KL, Dowdy D, et al. Incipient and subclinical tuberculosis: a clinical review of early-stages and progression of infection. Clin Microbiol Rev 2018;31:e00021-18. DOI: https://doi.org/10.1128/CMR.00021-18
Migliori GB, Ong CWM, Petrone L, et al. The definition of tuberculosis infection based on the spectrum of tuberculosis disease. Breathe 2021;17:210079 DOI: https://doi.org/10.1183/20734735.0079-2021
Coussens AK, Zaidi SMA, Allwood BW, et al. Classification of early tuberculosis states to guide research for improved care and prevention: an international Delphi consensus exercise. Lancet Respir Med 2024;12:484-98. DOI: https://doi.org/10.1016/S2213-2600(24)00028-6
Kik SV, Schumacher S, Cirillo DM, et al. An evaluation framework for new tests that predict progression from tuberculosis infection to clinical disease. Eur Respir J 2018;52:1800946. DOI: https://doi.org/10.1183/13993003.00946-2018
Frascella B, Richards AS, Sossen B, et al. Subclinical tuberculosis disease-a review and analysis of prevalence surveys to inform definitions, burden, associations, and screening methodology. Clin Infect Dis 2021;73:e830-41. DOI: https://doi.org/10.1093/cid/ciaa1402
Esmail H, Barry CE 3rd, Young DB, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014;369:20130437. DOI: https://doi.org/10.1098/rstb.2013.0437
Allwood B, van der Zalm M, Makanda G, et al. The long shadow post-tuberculosis. Lancet Infect Dis 2019;19:1170-1. DOI: https://doi.org/10.1016/S1473-3099(19)30564-X
Stuck L, van Haaster AC, Kapata-Chanda P, et al. How "subclinical" is subclinical tuberculosis? an analysis of national prevalence survey data from Zambia. Clin Infect Dis 2022;75:842-8. DOI: https://doi.org/10.1093/cid/ciab1050
Houben RMGJ, Esmail H, Emery JC, et al. Spotting the old foe-revisiting the case definition for TB. Lancet Respir Med 2019;7:199-201. DOI: https://doi.org/10.1016/S2213-2600(19)30038-4
Kendall EA, Shrestha S, Dowdy DW. The epidemiological importance of subclinical tuberculosis. A critical reappraisal. Am J Respir Crit Care Med 2021;203:168-74. DOI: https://doi.org/10.1164/rccm.202006-2394PP
Gunasekera K, Cohen T, Gao W, et al. Smoking and HIV associated with subclinical tuberculosis: analysis of a population-based prevalence survey. Int J Tuberc Lung Dis 2020;24:340-6. DOI: https://doi.org/10.5588/ijtld.19.0387
EsmailH, Dodd P J, Houben RMG J. Tuberculosis transmission during the subclinical period: could unrelated cough play a part? Lancet Respir Med 2018;6:244-6. DOI: https://doi.org/10.1016/S2213-2600(18)30105-X
Song WJ, Chang YS, Faruqi S, et al. The global epidemiology of chronic cough in adults: a systematic review and meta-analysis. Eur Respir J 2015;45:1479-81. DOI: https://doi.org/10.1183/09031936.00218714
Lin L, Yang ZF, Zhan YQ, et al. The duration of cough in patients with H1N1 influenza. Clin Respir J 2017;11:733-8. DOI: https://doi.org/10.1111/crj.12409
Patterson B, Wood R. Is cough really necessary for TB transmission? Tuberculosis 2019;117:31-5. DOI: https://doi.org/10.1016/j.tube.2019.05.003
Stuck L, Klinkenberg E, Abdelgadir Ali N, et al. Prevalence of subclinical pulmonary tuberculosis in adults in community settings: an individual participant data meta-analysis. Lancet Infect Dis 2024;24:726-36. DOI: https://doi.org/10.1016/S1473-3099(24)00011-2
Hamada Y, Quartagno M, Law I, et al. Association of diabetes, smoking, and alcohol use with subclinical-to-symptomatic spectrum of tuberculosis in 16 countries: an individual participant data meta-analysis of national tuberculosis prevalence surveys. EClinicalMedicine 2023;63:102191. DOI: https://doi.org/10.1016/j.eclinm.2023.102191
Onozaki I, Law I, Sismanidis C, et al. Nationaltuberculosis prevalence surveys in Asia, 1990-2012: an overviewof results and lessons learned. Trop Med Int Health 2015;20:1128-45. DOI: https://doi.org/10.1111/tmi.12534
Government of India. National TB prevalence survey in India 2019-2021. Available from: https://tbcindia.mohfw.gov.in/wp-content/uploads/2023/05/25032022161020NATBPSReport.pdf. Accessed: 6/11/2023.
Oni T, Burke R, Tsekela R, et al. High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening. Thorax 2011;66:669-73. DOI: https://doi.org/10.1136/thx.2011.160168
Tang P, Liang E, Zhang X, et al. Prevalence and risk factors of subclinical tuberculosis in a low-incidence setting in China. Front Microbiol 2022;12:731532. DOI: https://doi.org/10.3389/fmicb.2021.731532
Bajema KL, Bassett IV, Coleman SM, et al. Subclinical tuberculosis among adults with HIV: clinical features and outcomes in a South African cohort. BMC Infect Dis 2019;19:14. DOI: https://doi.org/10.1186/s12879-018-3614-7
Min J, Chung C, Jung SS, et al. Clinical profiles of subclinical disease among pulmonary tuberculosis patients: a prospective cohort study in South Korea. BMC Pulm Med 2020;20:316. DOI: https://doi.org/10.1186/s12890-020-01351-z
Carter N, Webb EL, Lebina L, et al. Prevalence of subclinical pulmonary tuberculosis and its association with HIV in household contacts of index tuberculosis patients in two South African provinces: a secondary, cross-sectional analysis of a cluster-randomised trial. BMC Glob Public Health 2023;1:21. DOI: https://doi.org/10.1186/s44263-023-00022-5
Mtei L, Matee M, Herfort O, et al. High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin Infect Dis 2005;40:1500-7. DOI: https://doi.org/10.1086/429825
Rickman HM, Cohn S, Lala SG, et al. Subclinical tuberculosis and adverse infant outcomes in pregnant women with HIV. Int J Tuberc Lung Dis 2020;24:681-5. DOI: https://doi.org/10.5588/ijtld.19.0500
Moyo S, Ismail F, Van der Walt M, et al. Prevalence of bacteriologically confirmed pulmonary tuberculosis in South Africa, 2017-19: a multistage, cluster-based, cross-sectional survey. Lancet Infect Dis 2022;22:1172-80. DOI: https://doi.org/10.1016/S1473-3099(22)00149-9
Ryckman TS, Dowdy DW, Kendall EA. Infectious and clinical tuberculosis trajectories: Bayesian modeling with case finding implications. Proc Natl Acad Sci U S A 2022;119:e2211045119. DOI: https://doi.org/10.1073/pnas.2211045119
Ku CC, MacPherson P, Khundi M, et al. Durations of asymptomatic, symptomatic, and care-seeking phases of tuberculosis disease with a Bayesian analysis of prevalence survey and notification data. BMC Med 2021;19:298. DOI: https://doi.org/10.1186/s12916-021-02128-9
Richards AS, Sossen B, Emery JC, et al. Quantifying progression and regression across the spectrum of pulmonary tuberculosis: a data synthesis study. Lancet Glob Health 2023;11:e684-92. DOI: https://doi.org/10.1016/S2214-109X(23)00082-7
Lawn SD, Kerkhoff AD, Wood R. Progression of subclinical culture-positive tuberculosis to symptomatic disease in HIV-infected individuals. AIDS 2011;25:2190-1. DOI: https://doi.org/10.1097/QAD.0b013e32834cda4e
Sossen B, Richards AS, Heinsohn T, et al. The natural history of untreated pulmonary tuberculosis in adults: a systematic review and meta-analysis. Lancet Respir Med 2023;11:367-79. DOI: https://doi.org/10.1016/S2213-2600(23)00097-8
Loudon RG, Roberts RM. Droplet expulsion from the respiratory tract. Am Rev Respir Dis 1967;95:435-42.
Loudon RG, Roberts RM. Singing and the dissemination of tuberculosis. Am Rev Respir Dis 1968;98:297-300.
Dinkele R, Gessner S, McKerry A, et al. Aerosolization of Mycobacterium tuberculosis by Tidal Breathing. Am J Respir Crit Care Med 2022;206:206-16. DOI: https://doi.org/10.1164/rccm.202110-2378OC
Emery JC, Dodd PJ, Banu S, et al. Estimating the contribution of subclinical tuberculosis disease to transmission – an individual patient data analysis from prevalence surveys. Elife 2023;12:e82469.
Xu Y, Cancino-Muñoz I, Torres-Puente M, et al. High-resolution mapping of tuberculosis transmission: Whole genome sequencing and phylogenetic modelling of a cohort from Valencia Region, Spain. PLoS Med 2019;16:e1002961. DOI: https://doi.org/10.1371/journal.pmed.1002961
Naidoo K, Moodley MC, Hassan-Moosa R, et al. Recurrent subclinical tuberculosis among antiretroviral therapy-accessing participants: incidence, clinical course, and outcomes. Clin Infect Dis 2022;75:1628-36. DOI: https://doi.org/10.1093/cid/ciac185
Nguyen HV, Tiemersma E, Nguyen NV, et al. Disease transmission by patients with subclinical tuberculosis. Clin Infect Dis 2023;76:2000-6. DOI: https://doi.org/10.1093/cid/ciad027
Medlar EM. Pathogenesis ofminimal tuberculosis. Am Rev Tuberc 1948;58:583-611.
Esmail H, Lai RP, Lesosky M, et al. Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proc Natl Acad Sci U S A 2018;115:E964-73. DOI: https://doi.org/10.1073/pnas.1711853115
Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 2014;26:431-44. DOI: https://doi.org/10.1016/j.smim.2014.09.012
Lau A, Lin C, Barrie J, et al. A comparison of the chest radiographic and computed tomographic features of subclinical pulmonary tuberculosis. Sci Rep 2022;12:16567. DOI: https://doi.org/10.1038/s41598-022-21016-7
Lau A, Lin C, Barrie J, et al. The radiographic and mycobacteriologic correlates of subclinical pulmonary TB in Canada: a retrospective cohort study. Chest 2022;162:309-20. DOI: https://doi.org/10.1016/j.chest.2022.01.047
Long R, Lau A, Barrie J, et al. Limitations of chest radiography in diagnosing subclinical pulmonary tuberculosis in Canada. Mayo Clin Proc Innov Qual Outcomes 2023;7:165-70. DOI: https://doi.org/10.1016/j.mayocpiqo.2023.03.003
Heffernan C, Egedahl ML, Barrie J, et al. The prevalence, risk factors, and public health consequences of peripheral lymph node-associated clinical and subclinical pulmonary tuberculosis. Int J Infect Dis 2023;129:165-74. DOI: https://doi.org/10.1016/j.ijid.2023.01.026
Han S, Yoon SH, Goo JM, Yim JJ. Radiological features and progression of incipient active pulmonary tuberculosis according to risk factors. Int J Tuberc Lung Dis 2019;23:698-706. DOI: https://doi.org/10.5588/ijtld.18.0541
Mamede M, Higashi T, Kitaichi M, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005;7:369-79. DOI: https://doi.org/10.1593/neo.04577
Esmail H, Lai RP, Lesosky M, et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat Med 2016;22:1090-3. DOI: https://doi.org/10.1038/nm.4161
WHO. WHO consolidated guidelines on tuberculosis. Module 2: screening. Systematic screening for tuberculosis disease. 2021. Available from: https://www.who.int/publications-detail-redirect/9789240022676.
Burke RM, Nliwasa M, Feasey HRA, et al. Community-based active case-finding interventions for tuberculosis: a systematic review. Lancet Public Health 2021;6:e283-99. DOI: https://doi.org/10.1016/S2468-2667(21)00033-5
Marks GB, Ho J, Nguyen PTB, et al. A direct measure of tuberculosis incidence - effect of community screening. N Engl J Med 2022;386:1380-2. DOI: https://doi.org/10.1056/NEJMc2114176
Corbett EL, Bandason T, Duong T, et al. Comparison of two active case-finding strategies for community-based diagnosis of symptomatic smear-positive tuberculosis and control of infectious tuberculosis in Harare, Zimbabwe (DETECTB): a cluster-randomised trial. Lancet 2010;376:1244-53. DOI: https://doi.org/10.1016/S0140-6736(10)61425-0
Dowdy DW, Basu S, Andrews JR. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis. Am J Respir Crit Care Med 2013;187:543-51. DOI: https://doi.org/10.1164/rccm.201207-1217OC
Martinson NA, Nonyane BAS, Genade LP, et al. Evaluating systematic targeted universal testing for tuberculosis in primary care clinics of South Africa: a cluster-randomized trial (The TUTT Trial). PLoS Med 2023;20:e1004237. DOI: https://doi.org/10.1371/journal.pmed.1004237
Houben RMGJ, Esmail H, Cobelens F, et al. Tuberculosis prevalence: beyond the tip of the iceberg. Lancet Respir Med 2022;10:537-9. DOI: https://doi.org/10.1016/S2213-2600(22)00184-9
Nathavitharana RR, Garcia-Basteiro AL, Ruhwald M, et al. Reimagining the status quo: How close are we to rapid sputum-free tuberculosis diagnostics for all? EBioMedicine 2022;78:103939. DOI: https://doi.org/10.1016/j.ebiom.2022.103939
Mahmoudi S, Hamidi M, Drain PK. Present outlooks on the prevalence of minimal and subclinical tuberculosis and current diagnostic tests: a systematic review and meta-analysis. J Infect Public Health 2024;17:102517. DOI: https://doi.org/10.1016/j.jiph.2024.102517
WHO. Consensus meeting report. development of a target product profile (TPP) and a framework for evaluation for a test for predicting progression from tuberculosis infection to active disease. Available from: https://www.who.int/publications/i/item/WHO-HTM-TB-2017.18.
MacLean E, Broger T, Yerlikaya S, et al. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 2019;4:748-58. DOI: https://doi.org/10.1038/s41564-019-0380-2
Sivakumaran D, Ritz C, Gjoen JE, et al. Host blood RNA transcript and protein signatures for sputum-independent diagnostics of tuberculosis in adults. Front Immunol 2020;11:626049. DOI: https://doi.org/10.3389/fimmu.2020.626049
Sivakumaran D, Jenum S, Srivastava A, et al. Host blood-based biosignatures for subclinical TB and incipient TB: a prospective study of adult TB household contacts in Southern India. Front Immunol 2023;13:1051963. DOI: https://doi.org/10.3389/fimmu.2022.1051963
Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med 2020;8:395-406. DOI: https://doi.org/10.1016/S2213-2600(19)30282-6
Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis 2021;21:354-65. DOI: https://doi.org/10.1016/S1473-3099(20)30914-2
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 2016;387:2312-22. DOI: https://doi.org/10.1016/S0140-6736(15)01316-1
Sutherland JS, van der Spuy G, Gindeh A, et al. TrENDx-TB Consortium. Diagnostic accuracy of the cepheid 3-gene host response fingerstick blood test in a prospective, multi-site study: interim results. Clin Infect Dis 2022;74:2136-41. DOI: https://doi.org/10.1093/cid/ciab839
Wanchu A, Dong Y, Sethi S, et al. Biomarkers for clinical and incipient tuberculosis: performance in a TB-endemic country. PLoS One 2008;3:e2071. DOI: https://doi.org/10.1371/journal.pone.0002071
Penn-Nicholson A, Mbandi SK, Thompson E, et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci Rep 2020;10:8629. DOI: https://doi.org/10.1101/19006197
Mulenga H, Musvosvi M, Mendelsohn SC, et al. Longitudinal Dynamics of a Blood Transcriptomic Signature of Tuberculosis. Am J Respir Crit Care Med 2021;204:1463-72. DOI: https://doi.org/10.1164/rccm.202103-0548OC
Mendelsohn SC, Fiore-Gartland A, Penn-Nicholson A, et al. Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study. Lancet Glob Health 2021;9:e841-53. DOI: https://doi.org/10.2139/ssrn.3750013
Esmail H, Cobelens F, Goletti D. Transcriptional biomarkers for predicting development of tuberculosis: progress and clinical considerations. Eur Respir J 2020;55:1901957. DOI: https://doi.org/10.1183/13993003.01957-2019
Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health 2021;3:e543-54. DOI: https://doi.org/10.1016/S2589-7500(21)00116-3
Cowie RL, Langton ME, Escreet BC. Diagnosis of sputum smear and sputum culture-negative pulmonary tuberculosis. S Afr Med J 1985;68:878.
Okada K, Onozaki I, Yamada N, et al. Epidemiological impact of mass tuberculosis screening: a 2-year follow-up after a national prevalence survey. Int J Tuberc Lung Dis 2012;16:1619-24. DOI: https://doi.org/10.5588/ijtld.12.0201
Williams CM, Abdulwhhab M, Birring SS, et al. Exhaled Mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: prospective observational studies. Lancet Infect Dis 2020;20:607-17. DOI: https://doi.org/10.1016/S1473-3099(19)30707-8
Patterson B, Bryden W, Call C, et al. Cough-independent production of viable Mycobacterium tuberculosis in bioaerosol. Tuberculosis 2021;126:102038. DOI: https://doi.org/10.1016/j.tube.2020.102038
Johnson GR, Morawska L. The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv 2009;22:229-37. DOI: https://doi.org/10.1089/jamp.2008.0720
Andama A, Whitman GR, Crowder R, et al. Accuracy of Tongue swab testing using Xpert MTB-RIF ultra for tuberculosis diagnosis. J Clin Microbiol 2022;60:e0042122. DOI: https://doi.org/10.1128/jcm.00421-22
Nakhleh MK, Jeries R, Gharra A, et al. Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors. Eur Respir J 2014;43:1522-5. DOI: https://doi.org/10.1183/09031936.00019114
Ketchanji Mougang YC, Endale Mangamba LM, Capuano R, et al. On-field test of tuberculosis diagnosis through exhaled breath analysis with a gas sensor array. Biosensors 2023;13:570. DOI: https://doi.org/10.3390/bios13050570
Saktiawati AMI, Stienstra Y, Subronto YW, et al. Sensitivity and specificity of an electronic nose in diagnosing pulmonary tuberculosis among patients with suspected tuberculosis. PLoS One 2019;14:e0217963. DOI: https://doi.org/10.1371/journal.pone.0217963
Coronel Teixeira R, IJdema D, et al. The electronic nose as a rule-out test for tuberculosis in an indigenous population. J Intern Med 2021;290:386-91. DOI: https://doi.org/10.1111/joim.13281
Comella-Del-Barrio P, Bimba JS, Adelakun R, et al. Fujifilm SILVAMP TB-LAM for the diagnosis of tuberculosis in Nigerian adults. J Clin Med 2021;10:2514. DOI: https://doi.org/10.3390/jcm10112514
Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon-gamma release assays and tuberculin skin testing for predicting progression from latent TB infection to disease state: a meta-analysis. Chest 2012;142:63-75. DOI: https://doi.org/10.1378/chest.11-3157
Fritschi N, Wind A, Hammer J, Ritz N. Subclinical tuberculosis in children: diagnostic strategies for identification reported in a 6-year national prospective surveillance study. Clin Infect Dis 2022;74:678-84. DOI: https://doi.org/10.1093/cid/ciab708
Esmail H, Macpherson L, Coussens AK, Houben RMGJ. Mind the gap - managing tuberculosis across the disease spectrum. EBioMedicine 2022;78:103928. DOI: https://doi.org/10.1016/j.ebiom.2022.103928
Kaufmann SHE, Dorhoi A, Hotchkiss RS, Bartenschlager R. Hostdirected therapies for bacterial and viral infections. Nat Rev Drug Discov 2018;17:35-56. DOI: https://doi.org/10.1038/nrd.2017.162
WHO. Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. 2011. Available from: https://www.who.int/publications/i/item/9789241500708.
Min Z, Chung C, Jung SS, et al. Subclinical tuberculosis disease and its treatment outcomes: a prospective cohort study in South Korea. Eur Respir J 2020;56:516. DOI: https://doi.org/10.1183/13993003.congress-2020.516
Tan Q, Huang C, Becerra M, et al. Effect of prevention therapy for subclinical tuberculosis in child household contacts. Eur Respir J 2022;60:565 DOI: https://doi.org/10.1183/13993003.congress-2022.565
Ananda NR, Triasih R, Dwihardiani B, te al. Spectrum of TB disease and treatment outcomes in a mobile community based active case finding program in Yogyakarta province, Indonesia. Trop Med Infect Dis 2023;8:447. DOI: https://doi.org/10.3390/tropicalmed8090447
Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis 2016;63:e147-95. DOI: https://doi.org/10.1093/cid/ciw376
Zhang W. Subclinical TB with innovative modified short-course regimens (SWIFT). 2023. Available from: https://clinicaltrials.gov/study/NCT06153069.
Dowdy DW, Grant AD, Dheda K, et al. Designing and evaluating interventions to halt the transmission of tuberculosis. J Infect Dis 2017;216:S654-61. DOI: https://doi.org/10.1093/infdis/jix320
WHO. Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches. Available from: https://www.who.int/publications/i/item/9789241511506.
Kim HY, Zishiri V, Page-Shipp L, et al. Symptom and digital chest X-ray TB screening in South African prisons: yield and cost-effectiveness. Int J Tuberc Lung Dis 2020;24:295-302. DOI: https://doi.org/10.5588/ijtld.19.0214

How to Cite

Sarkar, Malay. 2025. “Incipient and Subclinical Tuberculosis: A Narrative Review”. Monaldi Archives for Chest Disease, January. https://doi.org/10.4081/monaldi.2025.2982.

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.