Peripheral pulmonary lesion: novel approaches in endoscopic guidance systems and a state-of-the-art review

Submitted: July 3, 2024
Accepted: September 17, 2024
Published: December 20, 2024
Abstract Views: 120
PDF: 28
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Diagnosis of peripheral pulmonary lesion (PPL) is the most challenging field in bronchoscopy and interventional pulmonology, which concerns early lung cancer diagnosis. Despite novel techniques and new approaches to the periphery of the lung, almost 25% of PPLs remain undiagnosed. Bronchoscopy with guide systems, virtual and/or electromagnetic navigation, robotic bronchoscopy, and transparenchymal nodule approaches tend to provide a higher percentage of reaching the lesion, but the diagnostic yield rarely exceeds 75%, regardless of the instruments used. Further studies are needed to evaluate what the main constraints of this discrepancy are and if a combined use of these techniques and instruments can provide an increased diagnostic yield.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer. Chest 2013;143:e142S-65S. DOI: https://doi.org/10.1378/chest.12-2353
Steinfort DP, Khor YH, Manser RL, Irving LB. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J 2010;37:902-10. DOI: https://doi.org/10.1183/09031936.00075310
Ali MS, Trick W, Mba BI, et al. Radial endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis. Respirology 2017;22:443-53. DOI: https://doi.org/10.1111/resp.12980
Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest 2004;126:959-65. DOI: https://doi.org/10.1378/chest.126.3.959
Lachkar S, Guisier F, Roger M, Bota S, Lerouge D, Piton N, Thiberville L, Salaün M. A simple endoscopic method with radial endobronchial ultrasonography for low-migration rate coil-tailed fiducial marker placement. J Thorac Dis 2020;12:1467-74. DOI: https://doi.org/10.21037/jtd.2020.02.37
Zhang SJ, Zhang M, Zhou J, et al. Comparison of radial endobronchial ultrasound with a guide sheath and with distance by thin bronchoscopy for the diagnosis of peripheral pulmonary lesions: a prospective randomized crossover trial. J Thorac Dis 2016;8:3112-8. DOI: https://doi.org/10.21037/jtd.2016.11.77
Gildea TR. Lung lesion localization and the diagnostic drop. Ann Am Thorac Soc 2016;13:1450-2. DOI: https://doi.org/10.1513/AnnalsATS.201606-509ED
Oki M, Saka H, Imabayashi T, et al. Guide sheath versus non-guide sheath method for endobronchial ultrasound-guided biopsy of peripheral pulmonary lesions: a multicentre randomised trial. Eur Respir J 2022;59:2101678 DOI: https://doi.org/10.1183/13993003.01678-2021
Yarmus LB, Mallow C, Pastis N, et al. First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: a multicenter pilot study. Respiration 2019;98:527-33. DOI: https://doi.org/10.1159/000504025
Oki M, Saka H, Asano F, et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions. Chest 2019;156:954-64. DOI: https://doi.org/10.1016/j.chest.2019.06.038
Nishii Y, Nakamura Y, Fujiwara K, et al. Use of ultrathin bronchoscope on a need basis improves diagnostic yield of difficult-to-approach pulmonary lesions. Front Med 2020;7:588048. DOI: https://doi.org/10.3389/fmed.2020.588048
Oki M, Saka H, Ando M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions: a randomized trial. Am J Respir Crit Care Med 2015;192:468-76 DOI: https://doi.org/10.1164/rccm.201502-0205OC
Reynisson PJ, Leira HO, Hernes TN, et al. Navigated bronchoscopy: a technical review. J Bronchology Interv Pulmonol 2014;21:242-64. DOI: https://doi.org/10.1097/LBR.0000000000000064
Katsis JM, Rickman OB, Maldonado F, Lentz RJ. Bronchoscopic biopsy of peripheral pulmonary lesions in 2020: a review of existing technologies. J Thorac Dis 2020;1:3253-62. DOI: https://doi.org/10.21037/jtd.2020.02.36
Asano F, Eberhardt R, Herth FJF. Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respiration 2014;88:430-40. DOI: https://doi.org/10.1159/000367900
Pritchett MA, Bhadra K, Calcutt M, Folch E. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy. J Thorac Dis 2020;12:1595-611 DOI: https://doi.org/10.21037/jtd.2020.01.35
Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax 2011;66:1072-7. DOI: https://doi.org/10.1136/thx.2010.145490
Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med 2013;188:327-33. DOI: https://doi.org/10.1164/rccm.201211-2104OC
Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol 2019;14:445-58. DOI: https://doi.org/10.1016/j.jtho.2018.11.013
Zheng X, Xie F, Li Y, et al. Ultrathin bronchoscope combined with virtual bronchoscopic navigation and endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions with or without fluoroscopy: a randomized trial. Thorac Cancer 2021;12:1864-72. DOI: https://doi.org/10.1111/1759-7714.13995
Tachihara M, Tamura D, Kiriu T, et al. Bronchoscopy using virtual navigation and endobronchial ultrasonography with a guide sheath (EBUS-GS) with or without fluoroscopy for peripheral pulmonary lesions. Kobe J Med Sci 2018;63:E99-104.
Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: a technical review. J Thorac Dis 2020;12:7416-28. DOI: https://doi.org/10.21037/jtd-20-2382
Cheng GZ, Liu L, Nobari M, et al. Cone beam navigation bronchoscopy: the next frontier, J Thorac Dis 2020;12:3272-8. DOI: https://doi.org/10.21037/jtd.2020.03.85
Yu KL, Yang SM, Ko HJ, et al. Efficacy and safety of cone-beam computed tomography-derived augmented fluoroscopy combined with endobronchial ultrasound in peripheral pulmonary lesions. Respiration 2021;100:538-46. DOI: https://doi.org/10.1159/000515181
Verhoeven RLJ, Fütterer JJ, Hoefsloot W, van der Heijden E. Cone-beam CT image guidance with and without electromagnetic navigation bronchoscopy for biopsy of peripheral pulmonary lesions. J Bronchol Interv Pulmonol 2021;28:60-9. DOI: https://doi.org/10.1097/LBR.0000000000000697
Cicenia J, Bhadra K, Sethi S, et al. Augmented fluoroscopy: a new and novel navigation platform for peripheral bronchoscopy. J Bronchology Interv Pulmonol 2021;28:116-23. DOI: https://doi.org/10.1097/LBR.0000000000000722
Pritchett MA. Prospective analysis of a novel endobronchial augmented fluoroscopic navigation system for diagnosis of peripheral pulmonary lesions. J Bronchology Interv Pulmonol 2021;28:107-15. DOI: https://doi.org/10.1097/LBR.0000000000000700
Kheir F, Thakore SR, Uribe Becerra JP, et al. cone-beam computed tomography-guided electromagnetic navigation for peripheral lung nodules. Respiration 2021;100:44-51. DOI: https://doi.org/10.1159/000510763
Casal RF, Sarkiss M, Jones AK, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study. J Thorac Dis 2018;10:6950-9. DOI: https://doi.org/10.21037/jtd.2018.11.21
Kent AJ, Byrnes KA, Chang SH. State of the art: robotic bronchoscopy. Semin Thorac Cardiovasc Surg 2020;32:1030-5. DOI: https://doi.org/10.1053/j.semtcvs.2020.08.008
Chen AC, Gillespie CT. Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg 2018;106:293-7. DOI: https://doi.org/10.1016/j.athoracsur.2018.01.051
Chen AC, Pastis NJ, Mahajan AK, et al. Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT). Chest 2021;159:845-52. DOI: https://doi.org/10.1016/j.chest.2020.08.2047
Kalchiem-Dekel O, Connolly JG, Lin IH, et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest 2022;161:572-82. DOI: https://doi.org/10.1016/j.chest.2021.07.2169
Silvestri GA, Herth FJ, Keast T, et al. Feasibility and safety of bronchoscopic transparenchymal nodule access in canines: a new real-time image-guided approach to lung lesions. Chest 2014;145:833-8. DOI: https://doi.org/10.1378/chest.13-1971
Herth FJF, Eberhardt R, Sterman D, et al. Bronchoscopic transparenchymal nodule access (BTPNA): first in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 2015;70:326-32. DOI: https://doi.org/10.1136/thoraxjnl-2014-206211
Sun J, Criner GJ, Dibardino D, et al. Efficacy and safety of virtual bronchoscopic navigation with fused fluoroscopy and vessel mapping for access of pulmonary lesions. Respirology 2022;27:357-65. DOI: https://doi.org/10.1111/resp.14224
Lanfranchi F, Mancino L, Foltran G, et al. Use of the Archimedes navigation system to diagnose peripheral pulmonary lesions: preliminary Italian results. Front Oncol 2024;14:1394022. DOI: https://doi.org/10.3389/fonc.2024.1394022
Anciano C, Brown C, Bowling M. Going off road: the first case reports of the use of the transbronchial access tool with electromagnetic navigational bronchoscopy. J Bronchol Interv Pulmonol 2017;24:253-6. DOI: https://doi.org/10.1097/LBR.0000000000000337
Bowling MR, Brown C, Anciano CJ. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass. Ann Thorac Surg 2017;104:443-9. DOI: https://doi.org/10.1016/j.athoracsur.2017.02.035
Sobieszczyk MJ, Yuan Z, Li W, Krimsky W. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: a retrospective analysis. J Thorac Dis 2018;10:5953-9. DOI: https://doi.org/10.21037/jtd.2018.09.16
Oki M, Saka H, Kogure Y, et al. Ultrathin bronchoscopic cryobiopsy of peripheral pulmonary lesions. Respirology 2023;28:143-51. DOI: https://doi.org/10.1111/resp.14360
Sainz Zuniga PV, Vakil E, Molina S, et al. Sensitivity of radial endobronchial ultrasound-guided bronchoscopy for lung cancer in patients with peripheral pulmonary lesions: an updated meta-analysis. Chest 2020;157:994-1011. DOI: https://doi.org/10.1016/j.chest.2019.10.042
Yarmus L, Akulian J, Wahidi M, et al. A prospective randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules: the PRECISION-1 study. Chest 2020;157:694-701. DOI: https://doi.org/10.1016/j.chest.2019.10.016
Fernandes S, Williams G, Williams E, et al. Solitary pulmonary nodule imaging approaches and the role of optical fibre-based technologies. Eur Respir J 2021;57:2002537. DOI: https://doi.org/10.1183/13993003.02537-2020
Villalba AJA, Ost DE. Bronchoscopic treatment of early-stage peripheral lung cancer. Curr Opin Pulm Med 2024;30:337-45. DOI: https://doi.org/10.1097/MCP.0000000000001080

How to Cite

Lanfranchi, Filippo, and Lucio Michieletto. 2024. “Peripheral Pulmonary Lesion: Novel Approaches in Endoscopic Guidance Systems and a State-of-the-Art Review”. Monaldi Archives for Chest Disease, December. https://doi.org/10.4081/monaldi.2024.3115.

Similar Articles

<< < 63 64 65 66 67 68 69 70 71 72 > >> 

You may also start an advanced similarity search for this article.